Reversible site-selective labeling of membrane proteins in live cells (original) (raw)

References

  1. Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).
    Article CAS Google Scholar
  2. Schwille, P., Haupts, U., Maiti, S. & Webb, W.W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).
    Article CAS Google Scholar
  3. Chamberlain, C. & Hahn, K.M. Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells. Traffic 1, 755–762 (2000).
    Article CAS Google Scholar
  4. Hochuli, E., Dobeli, H. & Schacher, A. New metal chelate absorbant selective for proteins and peptides containing neighbouring histidine residues. J. Chromatography 411, 177–184 (1987).
    Article CAS Google Scholar
  5. Stora, T., Hovius, R., Dienes, Z., Pachoud, M. & Vogel, H. Metal ion trace detection by a chelator-modified gold electrode: a comparison of surface to bulk affinity. Langmuir 13, 5211–5214 (1997).
    Article CAS Google Scholar
  6. Holmes, K.L. & Lantz, L.M. Protein labeling with fluorescent probes. Methods Cell Biol. 63, 185–204 (2001).
    Article CAS Google Scholar
  7. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
    Article CAS Google Scholar
  8. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
    Article CAS Google Scholar
  9. Mendel, D., Cornish, V.W. & Schultz, P.G. Site-directed mutagenesis with an expanded genetic code. Annu. Rev. Biophys. Biomol. Struct. 24, 435–462 (1995).
    Article CAS Google Scholar
  10. Ilegems, E., Pick, H.M. & Vogel, H. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery. Nucleic Acids Res. 30, e128 (2002).
    Article Google Scholar
  11. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).
    Article CAS Google Scholar
  12. Giriat, I. & Muir, T.W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 215, 7180–7181 (2003).
    Article Google Scholar
  13. McMahan, S.A. & Burgess, R.R. Single-step synthesis and characterization of biotinylated nitrilotriaceticacid, a unique reagent for the detection of histidine-tagged proteins immobilized on nitrocellulose. Anal. Biochem. 236, 101–106 (1996).
    Article CAS Google Scholar
  14. Kapanidis, A.N., Ebright, Y.W. & Ebright, R.H. Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic acid (n)-fluorochrome conjugates. J. Am. Chem. Soc. 123, 12123–12125 (2001).
    Article CAS Google Scholar
  15. Keller, T.A. et al. Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane. Supramolecular Science 2, 155–160 (1995).
    Article CAS Google Scholar
  16. Reeves, D.C. & Lummis, S.C. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Mol. Membr. Biol. 19, 11–26 (2002).
    Article CAS Google Scholar
  17. Tairi, A.P. et al. Ligand binding to the serotonin 5HT3 receptor studied with a novel fluorescent ligand. Biochemistry 37, 15850–15864 (1998).
    Article CAS Google Scholar
  18. Schreiter, C. et al. Characterization of the ligand-binding site of the serotonin 5-HT3 receptor: the role of glutamate residues 97, 224, and 235. J. Biol. Chem. 278, 22709–22716 (2003).
    Article CAS Google Scholar
  19. White, S.H. & Wimley, W.C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).
    Article CAS Google Scholar
  20. Maricq, A.V., Peterson, A.S., Brake, A.J., Myers, R.M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432–437 (1991).
    Article CAS Google Scholar
  21. Sprong, H., Van der Sluijs, P. & Van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2, 504–513 (2001).
    Article CAS Google Scholar
  22. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).
    Article CAS Google Scholar
  23. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotech. 21, 1387–1395 (2003).
    Article CAS Google Scholar
  24. Maggi, C.A. & Schwartz, T.W. The dual nature of the tachykinin NK1 receptor. Trends Pharmacol. Sci. 18, 351–355 (1997).
    Article CAS Google Scholar
  25. Pierce, K.L., Premont, R.T. & Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 3, 639–650 (2002).
    Article CAS Google Scholar
  26. Pick, H. et al. Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cell. Biochemistry 42, 877–884 (2003).
    Article CAS Google Scholar
  27. Van der Meer, B.W., Coker, G. & Chen, S.Y.S. Resonance energy transfer: theory and data (VCH Publishers, New York, 1994).
    Google Scholar
  28. Boess, F.G., Beroukhim, R. & Martin, I.L. Ultrastructure of the 5-hydroxytryptamine3 receptor. J. Neurochem. 64, 1401–1405 (1995).
    Article CAS Google Scholar
  29. Wohland, T., Friedrich, K., Hovius, R. & Vogel, H. Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38, 8671–8681 (1999).
    Article CAS Google Scholar
  30. Vallotton, P. et al. Mapping the antagonist binding site of the serotonin type 3 receptor by fluorescence resonance energy transfer. Biochemistry 40, 12237–12242 (2001).
    Article CAS Google Scholar

Download references