ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini (original) (raw)
Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA89, 9064–9068 (1992). (Erratum, Proc. Natl Acad. Sci. USA90, 2556 (1993).) ArticleCASPubMed Google Scholar
Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol.137, 231–245 (1997). ArticleCASPubMedPubMed Central Google Scholar
Harris, J., Lippman, M., Morrow, M. & Osborne, C. Diseases of the Breast (Lippincott Williams and Wilkins, Philadelphia, 1999). Google Scholar
Olayioye, M. A., Neve, R. M., Lane, H. A. & Hynes, N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J.19, 3159–3167 (2000). ArticleCASPubMedPubMed Central Google Scholar
Riese, D. J. 2nd & Stern, D. F. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays20, 41–48 (1998). ArticlePubMed Google Scholar
Alroy, I. & Yarden, Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand–receptor interactions. FEBS Lett.410, 83–86 (1997). ArticleCASPubMed Google Scholar
Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene19, 6102–6114 (2000). ArticleCASPubMed Google Scholar
Hynes, N. E. & Stern, D. F. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta1198, 165–184 (1994). PubMed Google Scholar
Di Fiore, P. P. et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science237, 178–182 (1987). ArticleCASPubMed Google Scholar
Di Fiore, P. P. et al. EGF receptor and erbB-2 tyrosine kinase domains confer cell specificity for mitogenic signaling. Science248, 79–83 (1990). ArticleCASPubMed Google Scholar
Di Marco, E., Pierce, J. H., Knicley, C. L. & Di Fiore, P. P. Transformation of NIH 3T3 cells by overexpression of the normal coding sequence of the rat neu gene. Mol. Cell. Biol.10, 3247–3252 (1990). ArticleCASPubMedPubMed Central Google Scholar
Samanta, A. et al. Ligand and p185c-neu density govern receptor interactions and tyrosine kinase activation. Proc. Natl Acad. Sci. USA91, 1711–1715 (1994). ArticleCASPubMed Google Scholar
Gullick, W. J. & Srinivasan, R. The type 1 growth factor receptor family: new ligands and receptors and their role in breast cancer. Breast Cancer Res. Treat.52, 43–53 (1998). ArticleCASPubMed Google Scholar
Muthuswamy, S. K., Gilman, M. & Brugge, J. S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell. Biol.19, 6845–6857 (1999). ArticleCASPubMedPubMed Central Google Scholar
Soule, H. D. et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res.50, 6075–6086 (1990). CASPubMed Google Scholar
Amara, J. F. et al. A versatile synthetic dimerizer for the regulation of protein–protein interactions. Proc. Natl Acad. Sci. USA94, 10618–10623 (1997). ArticleCASPubMed Google Scholar
Borg, J. P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol.2, 407–414 (2000). ArticleCASPubMed Google Scholar
Hobert, M. & Carlin, C. Cytoplasmic juxtamembrane domain of the human EGF receptor is required for basolateral localization in MDCK cells. J. Cell Physiol.162, 434–446 (1995). ArticleCASPubMed Google Scholar
Basolo, F. et al. Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol. Carcinog.4, 25–35 (1991). ArticleCASPubMed Google Scholar
Howlett, A. R. et al. Cellular growth and survival are mediated by β1 integrins in normal human breast epithelium but not in breast carcinoma. J. Cell Sci.108, 1945–157 (1995). CASPubMed Google Scholar
Streuli, C. H. & Gilmore, A. P. Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. J. Mammary Gland Biol. Neoplasia4, 183–191 (1999). ArticleCASPubMed Google Scholar
Wodarz, A. Tumor suppressors: linking cell polarity and growth control. Curr. Biol.10, R624–R626 (2000).
Collins, M. K. et al. Transfer of functional EGF receptors to an IL3-dependent cell line. J. Cell. Physiol.137, 293–298 (1988). ArticleCASPubMed Google Scholar
Reichmann, E. et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell71, 1103–1116 (1992). ArticleCASPubMed Google Scholar
Fialka, I. et al. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol.132, 1115–1132 (1996). ArticleCASPubMed Google Scholar
Schoenenberger, C. A., Zuk, A., Kendall, D. & Matlin, K. S. Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J. Cell Biol.112, 873–889 (1991). ArticleCASPubMed Google Scholar
Spancake, K. M. et al. E7-transduced human breast epithelial cells show partial differentiation in three-dimensional culture. Cancer Res.59, 6042–6045 (1999). CASPubMed Google Scholar
Blatchford, D. R. et al. Influence of microenvironment on mammary epithelial cell survival in primary culture. J. Cell. Physiol.181, 304–311 (1999). ArticleCASPubMed Google Scholar
Boudreau, N., Sympson, C. J., Werb, Z. & Bissell, M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science267, 891–893 (1995). ArticleCASPubMedPubMed Central Google Scholar
Frisch, S. M. & Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol.9, 701–706 (1997). ArticleCASPubMed Google Scholar
Baeckstrom, D., Alford, D. & Taylor-Papadimitriou, J. Morphogenetic and proliferative responses to heregulin of mammary epithelial cells in vitro are dependent on HER2 and HER3 and differ from the responses to HER2 homodimerisation or hepatocyte growth factor. Int. J. Oncol.16, 1081–1090 (2000). CASPubMed Google Scholar
Chausovsky, A. et al. Molecular requirements for the effect of neuregulin on cell spreading, motility and colony organization. Oncogene19, 878–888 (2000). ArticleCASPubMed Google Scholar
Spencer, K. S. et al. ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol.148, 385–397 (2000). ArticleCASPubMedPubMed Central Google Scholar
Keely, P. J. et al. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature390, 632–636 (1997). ArticleCASPubMed Google Scholar
Vleminckx, K. et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell66, 107–119 (1991). ArticleCASPubMed Google Scholar
D'Souza, B. & Taylor-Papadimitriou, J. Overexpression of ERBB2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene. Proc. Natl Acad. Sci. USA91, 7202–7206 (1994). ArticleCASPubMed Google Scholar
Ciardiello, F. et al. Transforming growth factor-α expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras protooncogene but not by the c-neu protooncogene, and overexpression of the transforming growth factor-α complementary DNA leads to transformation. Cell Growth Differ.1, 407–420 (1990). CASPubMed Google Scholar
Giunciuglio, D. et al. Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int. J. Cancer63, 815–822 (1995). ArticleCASPubMed Google Scholar
Harris, R. A. et al. New model of ErbB-2 over-expression in human mammary luminal epithelial cells. Int. J. Cancer80, 477–484 (1999). ArticleCASPubMed Google Scholar
D'Souza, B., Berdichevsky, F., Kyprianou, N. & Taylor-Papadimitriou, J. Collagen-induced morphogenesis and expression of the α2-integrin subunit is inhibited in c-erbB2-transfected human mammary epithelial cells. Oncogene8, 1797–1806 (1993). CASPubMed Google Scholar
Pierce, J. H. et al. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene6, 1189–1194 (1991). CASPubMed Google Scholar
Lucassen, E. et al. The effects of the neuN and neuT genes on differentiation and transformation of mammary epithelial cells. J. Cell Sci.107, 2919–2929 (1994). CASPubMed Google Scholar
Normanno, N. et al. Amphiregulin as an autocrine growth factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. Proc. Natl Acad. Sci. USA91, 2790–2794 (1994). ArticleCASPubMed Google Scholar
Niemann, C. et al. Reconstitution of mammary gland development in vitro: requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol.143, 533–545 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ory, D. S., Neugeboren, B. A. & Mulligan, R. C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl Acad. Sci. USA93, 11400–11406 (1996). ArticleCASPubMed Google Scholar
Miranti, C. K., Ohno, S. & Brugge, J. S. Protein kinase C regulates integrin-induced activation of the extracellular regulated kinase pathway upstream of Shc. J. Biol. Chem.274, 10571–10581 (1999). ArticleCASPubMed Google Scholar
Khoury, H. et al. Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene15, 786–799 (2001). Google Scholar