Borg proteins control septin organization and are negatively regulated by Cdc42 (original) (raw)

References

  1. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).
    Article CAS Google Scholar
  2. Richman, T. J., Sawyer, M. M. & Johnson, D. I. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem. 274, 16861–16870 (1999).
    Article CAS Google Scholar
  3. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).
    Article CAS Google Scholar
  4. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
    Article CAS Google Scholar
  5. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).
    Article CAS Google Scholar
  6. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac Gtpases. J. Biol. Chem. 270, 29071–29074 (1995).
    Article CAS Google Scholar
  7. Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol. Cell. Biol. 19, 6585–6597 (1999).
    Article CAS Google Scholar
  8. Hirsch, D. S., Pirone, D. M. & Burbelo, P. D. A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. J. Biol. Chem. 276, 875–883 (2001).
    Article CAS Google Scholar
  9. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994).
    Article CAS Google Scholar
  10. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).
    Article CAS Google Scholar
  11. Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).
    Article CAS Google Scholar
  12. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).
    Article CAS Google Scholar
  13. Trimble, W. S. Septins: a highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J. Membrane Biol. 169, 75–81 (1999).
    Article CAS Google Scholar
  14. Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases?. Trends Cell Biol. 9, 387–394 (1999).
    Article CAS Google Scholar
  15. Kartmann, B. & Roth, D. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J. Cell Sci. 114, 839–844 (2001).
    CAS PubMed Google Scholar
  16. Kalikin, L. M., Sims, H. L. & Petty, E. M. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 63, 165–172 (2000).
    Article CAS Google Scholar
  17. McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U. J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet. 101, 6–12 (1997).
    Article CAS Google Scholar
  18. Osaka, M., Rowley, J. D. & Zeleznik-Le, N. J. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc. Natl Acad. Sci. USA 96, 6428–6433 (1999).
    Article CAS Google Scholar
  19. Megonigal, M. D. et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc. Natl Acad. Sci. USA 95, 6413–6418 (1998).
    Article CAS Google Scholar
  20. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).
    Article CAS Google Scholar
  21. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996).
    Article CAS Google Scholar
  22. Longtine, M. S., Fares, H. & Pringle, J. R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol. 143, 719–736 (1998).
    Article CAS Google Scholar
  23. Damer, C. K., Partridge, J., Pearson, W. R. & Haystead, T. A. Rapid identification of protein phosphatase 1-binding proteins by mixed peptide sequencing and data base searching. Characterization of a novel holoenzymic form of protein phosphatase 1. J. Biol. Chem. 273, 24396–24405 (1998).
    Article CAS Google Scholar
  24. Fung, E. T. & Scheller, R. H. Identification of a novel alternatively spliced septin. FEBS Lett. 451, 203–208 (1999).
    Article CAS Google Scholar
  25. Hsu, S. C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).
    Article CAS Google Scholar
  26. Kinoshita, A., Noda, M. & Kinoshita, M. Differential localization of septins in the mouse brain. J. Comp. Neurol. 428, 223–239 (2000).
    Article CAS Google Scholar
  27. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a Wasp-related actin-depolymerizing protein N-Wasp. Nature 391, 93–96 (1998).
    Article CAS Google Scholar
  28. Tjandra, H., Compton, J. & Kellogg, D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr. Biol. 8, 991–1000 (1998).
    Article CAS Google Scholar
  29. Mott, H. R. et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399, 384–388 (1999).
    Article CAS Google Scholar
  30. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature 399, 379–383 (1999).
    Article CAS Google Scholar
  31. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).
    Article CAS Google Scholar
  32. Zhao, Z. S. et al. A conserved negative regulatory region in α-Pak—inhibition of Pak kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol. 18, 2153–2163 (1998).
    Article CAS Google Scholar
  33. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).
    Article CAS Google Scholar
  34. Prehoda, K. E., Scott, J. A., Dyche Mullins, R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N- WASP–Arp2/3 complex. Science 290, 801–806 (2000).
    Article CAS Google Scholar
  35. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).
    Article CAS Google Scholar
  36. McKiernan, C. J., Stabila, P. F. & Macara, I. G. Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells. Mol. Cell. Biol. 16, 4985–4995 (1996).
    Article CAS Google Scholar

Download references