Borg proteins control septin organization and are negatively regulated by Cdc42 (original) (raw)
References
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol.2, 531–539 (2000). ArticleCAS Google Scholar
Richman, T. J., Sawyer, M. M. & Johnson, D. I. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J. Biol. Chem.274, 16861–16870 (1999). ArticleCAS Google Scholar
Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol.1, 8–13 (1999). ArticleCAS Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53–62 (1995). ArticleCAS Google Scholar
Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev.11, 2295–2322 (1997). ArticleCAS Google Scholar
Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac Gtpases. J. Biol. Chem.270, 29071–29074 (1995). ArticleCAS Google Scholar
Joberty, G., Perlungher, R. R. & Macara, I. G. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol. Cell. Biol.19, 6585–6597 (1999). ArticleCAS Google Scholar
Hirsch, D. S., Pirone, D. M. & Burbelo, P. D. A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. J. Biol. Chem.276, 875–883 (2001). ArticleCAS Google Scholar
Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell77, 371–379 (1994). ArticleCAS Google Scholar
Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev.11, 1535–1547 (1997). ArticleCAS Google Scholar
Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science290, 341–344 (2000). ArticleCAS Google Scholar
Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell5, 841–851 (2000). ArticleCAS Google Scholar
Trimble, W. S. Septins: a highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J. Membrane Biol.169, 75–81 (1999). ArticleCAS Google Scholar
Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases?. Trends Cell Biol.9, 387–394 (1999). ArticleCAS Google Scholar
Kartmann, B. & Roth, D. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J. Cell Sci.114, 839–844 (2001). CASPubMed Google Scholar
Kalikin, L. M., Sims, H. L. & Petty, E. M. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics63, 165–172 (2000). ArticleCAS Google Scholar
McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U. J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet.101, 6–12 (1997). ArticleCAS Google Scholar
Osaka, M., Rowley, J. D. & Zeleznik-Le, N. J. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc. Natl Acad. Sci. USA96, 6428–6433 (1999). ArticleCAS Google Scholar
Megonigal, M. D. et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc. Natl Acad. Sci. USA95, 6413–6418 (1998). ArticleCAS Google Scholar
Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol.143, 737–749 (1998). ArticleCAS Google Scholar
Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol.133, 605–616 (1996). ArticleCAS Google Scholar
Longtine, M. S., Fares, H. & Pringle, J. R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function. J. Cell Biol.143, 719–736 (1998). ArticleCAS Google Scholar
Damer, C. K., Partridge, J., Pearson, W. R. & Haystead, T. A. Rapid identification of protein phosphatase 1-binding proteins by mixed peptide sequencing and data base searching. Characterization of a novel holoenzymic form of protein phosphatase 1. J. Biol. Chem.273, 24396–24405 (1998). ArticleCAS Google Scholar
Fung, E. T. & Scheller, R. H. Identification of a novel alternatively spliced septin. FEBS Lett.451, 203–208 (1999). ArticleCAS Google Scholar
Hsu, S. C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron20, 1111–1122 (1998). ArticleCAS Google Scholar
Kinoshita, A., Noda, M. & Kinoshita, M. Differential localization of septins in the mouse brain. J. Comp. Neurol.428, 223–239 (2000). ArticleCAS Google Scholar
Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a Wasp-related actin-depolymerizing protein N-Wasp. Nature391, 93–96 (1998). ArticleCAS Google Scholar
Tjandra, H., Compton, J. & Kellogg, D. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Curr. Biol.8, 991–1000 (1998). ArticleCAS Google Scholar
Mott, H. R. et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature399, 384–388 (1999). ArticleCAS Google Scholar
Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature399, 379–383 (1999). ArticleCAS Google Scholar
Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature404, 151–158 (2000). ArticleCAS Google Scholar
Zhao, Z. S. et al. A conserved negative regulatory region in α-Pak—inhibition of Pak kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol. Cell. Biol.18, 2153–2163 (1998). ArticleCAS Google Scholar
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell97, 221–231 (1999). ArticleCAS Google Scholar
Prehoda, K. E., Scott, J. A., Dyche Mullins, R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N- WASP–Arp2/3 complex. Science290, 801–806 (2000). ArticleCAS Google Scholar
Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol.150, 1299–1310 (2000). ArticleCAS Google Scholar
McKiernan, C. J., Stabila, P. F. & Macara, I. G. Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells. Mol. Cell. Biol.16, 4985–4995 (1996). ArticleCAS Google Scholar