Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature375, 754–760 (1995). ArticleCASPubMed Google Scholar
Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science269, 973–977 (1995). ArticleCASPubMed Google Scholar
Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature376, 775–778 (1995). ArticleCASPubMed Google Scholar
Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA95, 7109–7114 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thinakaran, G. et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem.272, 28415–28422 (1997). ArticleCASPubMed Google Scholar
Thinakaran et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron17, 181–190 (1996). ArticleCASPubMed Google Scholar
Capell, A. et al. The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem.273, 3205–3211 (1998). ArticleCASPubMed Google Scholar
Kim, T. W. et al. Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem.272, 11006–11010 (1997). ArticleCASPubMed Google Scholar
Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem.273, 16470–16475 (1998). ArticleCASPubMed Google Scholar
Yu, G. et al. Mutation of conserved aspartates affects maturation of both aspartate mutant and endogenous presenilin 1 and presenilin 2 complexes. J. Biol. Chem.275, 27348–27353 (2000). CASPubMed Google Scholar
Steiner, H. et al. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem.273, 32322–32331 (1998). ArticleCASPubMed Google Scholar
Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature407, 48–54 (2000). ArticleCASPubMed Google Scholar
Zhou, J. et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport8, 1489–1494 (1997). ArticleCASPubMed Google Scholar
Saura, C. A. et al. The nonconserved hydrophilic loop domain of presenilin (PS) is not required for PS endoproteolysis or enhanced Aβ42 production mediated by familial early onset Alzheimer's disease-linked PS variants. J. Biol. Chem.275, 17136–17142 (2000). ArticleCASPubMed Google Scholar
Soriano, S. et al. Presenilin 1 negatively regulates β-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and Notch processing. J. Cell Biol.152, 785–794 (2001). ArticleCASPubMedPubMed Central Google Scholar
Selkoe, D. J. Notch and presenilins in vertebrates and invertebrates: implications for neuronal development and degeneration. Curr. Opin. Neurobiol.10, 50–57 (2000). ArticleCASPubMed Google Scholar
Wong, P. C. et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature387, 288–292 (1997). ArticleCASPubMed Google Scholar
Shen, J. et al. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell89, 629–639 (1997). ArticleCASPubMed Google Scholar
Xia, X. et al. Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc. Natl Acad. Sci. (in the press).
Vito, P., Lacana, E. & D'Adamio, L. Interfering with apoptosis: Ca-binding protein Alg-2 and Alzheimer's disease gene Alg-3. Science271, 521–525 (1996). ArticleCASPubMed Google Scholar
Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol.1, 479–485 (1999). ArticleCASPubMed Google Scholar
Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell99, 691–702 (1999). ArticleCASPubMed Google Scholar
Leissring, M. A. et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol.149, 793–798 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yoo, A. S. et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron27, 561–572 (2000). ArticleCASPubMed Google Scholar
Yu, H. et al. APP processing and synaptic plasticity in the adult cerebral cortex of presenilin-1 conditional knock out mice. Neuron (in the press).
Sato, N. et al. Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nature Cell Biol.2, 863–870 (2000). ArticleCASPubMed Google Scholar
Gu, Y. et al. Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of Notch. J. Biol. Chem. 10.1074/jbc.C100357200 (2001).
Pinnix, I. et al. A novel γ-secretase assay based on detection of the putative C-terminal fragment-γ of amyloid β protein precursor. J. Biol. Chem.276, 481–487 (2001). ArticleCASPubMed Google Scholar
Sastre, M. et al. Presenilin-dependent γ-secretase processing of β-Amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. (in the press).
Lichtenthaler, S. F. et al. Mechanism of the cleavage specificity of Alzheimer's disease γ-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc. Natl Acad. Sci. USA96, 3053–3058 (1999). ArticleCASPubMedPubMed Central Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 (1996). ArticleCASPubMed Google Scholar
De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391, 387–390 (1998). ArticleCASPubMed Google Scholar
Naruse, S. et al. Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron21, 1213–1221 (1998). ArticleCASPubMed Google Scholar
Zhang, Z. et al. Presenilins are required for γ-secretase cleavage of β-APP and transmembrane cleavage of Notch-1. Nature Cell Biol.2, 463–465 (2000). ArticleCASPubMed Google Scholar
Herreman, A. et al. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol.2, 461–462 (2000). ArticleCASPubMed Google Scholar
Armogida, M. et al. Endogeneous β-amyloid production in presenilin-deficient embryonic mice fibroblasts. Nature Cell Biol. (in the press).
Annaert, W. G. et al. Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell Biol.147, 277–294 (1999). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. M. et al. Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl Acad. Sci. USA97, 6138–6143 (2000). ArticleCASPubMedPubMed Central Google Scholar
Seiffert, D. et al. Presenilin-1 and -2 are molecular targets for γ-secretase inhibitors. J. Biol. Chem.275, 34086–34091 (2000). ArticleCASPubMed Google Scholar
Palacino, J. J. et al. Regulation of amyloid precursor protein processing by presenilin 1 (PS1) and PS2 in PS1 knockout cells. J. Biol. Chem.275, 215–222 (2000). ArticleCASPubMed Google Scholar
Wolfe, M. S. et al. Peptidomimetic probes and molecular modeling suggest that Alzheimer's γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry38, 4720–4727 (1999). ArticleCASPubMed Google Scholar
Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenelin endoproteolysis and γ-secretase activity. Nature398, 513–517 (1999). ArticleCASPubMed Google Scholar
Steiner, H. et al. Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nature Cell Biol.2, 848–851 (2000). ArticleCASPubMed Google Scholar
Esler, W. P. et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biol.2, 428–434 (2000). ArticleCASPubMed Google Scholar
Li, Y. M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature405, 689–694 (2000). ArticleCASPubMed Google Scholar
De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature398, 518–522 (1999). ArticleCASPubMed Google Scholar
Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature398, 522–525 (1999). ArticleCASPubMed Google Scholar
Annaert, W. & De Strooper, B. Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci.22, 439–443 (1999). ArticleCASPubMed Google Scholar
Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. & De Strooper, B. The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J. Neurochem.78, 1168–1178
Cao, X. & Sudhof, T. C. A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science293, 115–120 (2001). ArticleCASPubMed Google Scholar
Capell, A. et al. Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nature Cell Biol.2, 205–211 (2000). ArticleCASPubMed Google Scholar
Morihara, T. et al. Absence of endoproteolysis but no effects on amyloid β production by alternative splicing forms of presenilin-1, which lack exon 8 and replace D257A. Brain Res. Mol. Brain Res.85, 85–90 (2000). ArticleCASPubMed Google Scholar
Petit, A. et al. New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch cleavage. Nature Cell Biol.3, 507–511 (2001). ArticleCASPubMed Google Scholar
Citron, M. et al. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron17, 171–179 (1996). ArticleCASPubMed Google Scholar
Vassar, R. et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science286, 735–741 (1999). ArticleCASPubMed Google Scholar
Huppert, S. S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature405, 966–970 (2000). ArticleCASPubMed Google Scholar
Murphy, M. P. et al. Presenilin 1 regulates pharmacologically distinct γ-secretase activities. Implications for the role of presenilin in γ-secretase cleavage. J. Biol. Chem.275, 26277–26284 (2000). ArticleCASPubMed Google Scholar
Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997). ArticleCASPubMed Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). ArticleCASPubMed Google Scholar
Sakai, J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell2, 505–514 (1998). ArticleCASPubMed Google Scholar
Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell1, 47–57 (1997). ArticleCASPubMed Google Scholar
Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364 (2000). ArticleCASPubMed Google Scholar
Cupers, P. et al. The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein. J Cell Biol154, 731–740 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ray, W. J. et al. Cell surface presenilin-1 participates in the γ-secretase-like proteolysis of notch. J. Biol. Chem.274, 36801–36807 (1999). ArticleCASPubMed Google Scholar
Thinakaran, G. et al. Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis.4, 438–453 (1998). ArticleCASPubMed Google Scholar
Lammich, S. et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA96, 3922–3927 (1999). ArticleCASPubMedPubMed Central Google Scholar
Buxbaum, J. D. et al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem.273, 27765–27767 (1998). ArticleCASPubMed Google Scholar
Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell6, 625–636 (2000). ArticleCASPubMed Google Scholar
Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA95, 8108–8112 (1998). ArticleCASPubMedPubMed Central Google Scholar
Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell5, 207–216 (2000). ArticleCASPubMed Google Scholar
Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell5, 197–206 (2000). ArticleCASPubMed Google Scholar
Yang, T., Goldstein, J. L. & Brown, M. S. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP.SREBP exit from endoplasmic reticulum. J. Biol. Chem.275, 29881–29886 (2000). ArticleCASPubMed Google Scholar
Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S. & Espenshade, P. J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell102, 315–323 (2000). ArticleCASPubMed Google Scholar
Duncan, E. A., Dave, U. P., Sakai, J., Goldstein, J. L. & Brown, M. S. Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J. Biol. Chem.273, 17801–17809 (1998). ArticleCASPubMed Google Scholar
Xia, W. et al. Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid β-protein generation. Proc. Natl Acad. Sci. USA97, 9299–9304 (2000). ArticleCASPubMedPubMed Central Google Scholar
Weidemann, A. et al. Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and β-amyloid precursor protein. Nature Med.3, 328–332 (1997). ArticleCASPubMed Google Scholar
Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA98, 5856–5861 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maltese, W. A. et al. Retention of the Alzheimer's amyloid precursor protein fragment C99 in the endoplasmic reticulum prevents formation of amyloid β-peptide. J. Biol. Chem.276, 20267–20279 (2001). ArticleCASPubMed Google Scholar
Iwata, H., Tomita, T., Maruyama, K. & Iwatsubo, T. Subcellular compartment and molecular subdomain of β-amyloid precursor protein relevant to the Aβ42-promoting effects of Alzheimer mutant presenilin 2. J. Biol. Chem.276, 21678–21685 (2001). ArticleCASPubMed Google Scholar