Cdk5 is essential for synaptic vesicle endocytosis - Nature Cell Biology (original) (raw)
Liu, J.P., Sim, A.T.R. & Robinson, P.J. Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science265, 970–973 (1994). ArticleCAS Google Scholar
Marks, B. & McMahon, H.T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr.Biol.8, 740–749 (1998). ArticleCAS Google Scholar
Cousin, M.A., Tan, T.C. & Robinson, P.J. Protein phosphorylation is required for endocytosis in nerve terminals. Potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J. Neurochem.76, 105–116 (2001). ArticleCAS Google Scholar
Cousin, M.A. Synaptic vesicle endocytosis: calcium works overtime in the nerve terminal. Mol. Neurobiol.22, 115–128 (2000). ArticleCAS Google Scholar
Cousin, M.A. & Robinson, P.J. The dephosphins: Dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci.24, 659–665 (2001). ArticleCAS Google Scholar
Wenk, M.R. et al. PIP Kinase Iγ is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron32, 79–88 (2001). ArticleCAS Google Scholar
Powell, K.A. et al. Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with phospholipids. J. Biol. Chem.275, 11610–11617 (2000). ArticleCAS Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). ArticleCAS Google Scholar
Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science276, 259–263 (1997). ArticleCAS Google Scholar
Gad, H. et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron27, 301–312 (2000). ArticleCAS Google Scholar
Robinson, P.J. Dephosphin, a 96,000 dalton substrate of protein kinase C in synaptosomal cytosol is phosphorylated in intact synaptosomes. FEBS Lett.282, 388–392 (1991). ArticleCAS Google Scholar
Robinson, P.J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature365, 163–166 (1993). ArticleCAS Google Scholar
Hosoya, H. et al. Phosphorylation of dynamin by cdc2 kinase. Biochem. Biophys. Res. Commun.202, 1127–1133 (1994). ArticleCAS Google Scholar
Earnest, S., Khokhlatchev, A., Albanesi, J.P. & Barylko, B. Phosphorylation of dynamin by ERK2 inhibits the dynamin–microtubule interaction. FEBS Lett.396, 62–66 (1996). ArticleCAS Google Scholar
Chen-Hwang, M.-C., Chen, H.-R., Elzinga, M. & Hwang, Y.-W. Dynamin is a minibrain kinase/Dyrk1A substrate. J. Biol. Chem.277, 17597–17604 (2002). ArticleCAS Google Scholar
Songyang, Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol.16, 6486–6493 (1996). ArticleCAS Google Scholar
Tomizawa, K. et al. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci.22, 2590–2597 (2002). ArticleCAS Google Scholar
Matsubara, M. et al. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem.271, 21108–21113 (1996). ArticleCAS Google Scholar
Shuang, R.Q. et al. Regulation of Munc-18 syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J. Biol. Chem.273, 4957–4966 (1998). ArticleCAS Google Scholar
Floyd, S.R. et al. Amphiphysin binds the cdk5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J. Biol. Chem.276, 8104–8110 (2001). ArticleCAS Google Scholar
Hill, E., van der, K.J., Downes, C.P. & Smythe, E. The role of dynamin and its binding partners in coated pit invagination and scission. J. Cell Biol.152, 309–324 (2001). ArticleCAS Google Scholar
Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem.272, 13419–13425 (1997). ArticleCAS Google Scholar
Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem.243, 527–536 (1997). ArticleCAS Google Scholar
Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105 (2000). ArticleCAS Google Scholar
Cousin, M.A. et al. Synapsin I-associated phosphatidylinositol 3-kinase mediates synaptic vesicle delivery to the readily releasable pool. J. Biol. Chem. (cited 16 May 2003) DOI: 10.1074/jbc.M302386200 (2003).
Rosales, J.L., Nodwell, M.J., Johnston, R.N. & Lee, K.Y. Cdk5/p25(nck5a) interaction with synaptic proteins in bovine brain. J. Cell. Biochem.78, 151–159 (2000). ArticleCAS Google Scholar
Cousin, M.A. & Robinson, P.J. Ca2+ inhibition of dynamin arrests synaptic vesicle recycling at the active zone. J. Neurosci.20, 949–957 (2000). ArticleCAS Google Scholar
Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci.9, 3844–3860 (1989). ArticleCAS Google Scholar
Liu, J.P., Powell, K.A., Südhof, T.C. & Robinson, P.J. Dynamin I is a Ca2+-sensitive phospholipid-binding protein with very high affinity for protein kinase C. J. Biol. Chem.269, 21043–21050 (1994). CASPubMed Google Scholar
Robinson, P.J. Differential stimulation of protein kinase C activity by phorbol ester or calcium/phosphatidylserine in vitro and in intact synaptosomes. J. Biol. Chem.267, 21637–21644 (1992). CASPubMed Google Scholar
Robinson, P.J., Liu, J.P., Powell, K.A., Fykse, E.M. & Südhof, T.C. Phosphorylation of dynamin I and synaptic vesicle recycling. Trends Neurosci.17, 348–353 (1994). ArticleCAS Google Scholar
Dhavan, R., Tsai, L.H. & Tsai, L.H. A decade of cdk5. Nature Rev. Mol. Cell Biol.2, 749–759 (2001). ArticleCAS Google Scholar
Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA93, 11173–11178 (1996). ArticleCAS Google Scholar
Kwon, Y.T., Tsai, L.H. & Crandall, J.E. Callosal axon guidance defects in p35(−/−) mice. J. Comp. Neurol.415, 218–229 (1999). ArticleCAS Google Scholar
Tsai, L.H., Takahashi, T., Caviness, V.S.J. & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development119, 1029–1040 (1993). CASPubMed Google Scholar
Bibb, J.A. et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature410, 376–380 (2001). ArticleCAS Google Scholar
Fletcher, A.I. et al. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of munc18. J. Biol. Chem.274, 4027–4035 (1999). ArticleCAS Google Scholar
Li, B.S. et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc. Natl Acad. Sci. USA98, 12742–12747 (2001). ArticleCAS Google Scholar
Yan, Z., Chi, P., Bibb, J.A., Ryan, T.A. & Greengard, P. Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J. Physiol.540, 761–770 (2002). ArticleCAS Google Scholar
Nicholls, D.G. The glutamatergic nerve terminal. Eur. J. Biochem.212, 613–631 (1993). ArticleCAS Google Scholar
Wilde, A. & Brodsky, F.M. In vivo phosphorylation of adaptors regulates their interaction with clathrin. J. Cell Biol.135, 635–645 (1996). ArticleCAS Google Scholar
Kariya, K. et al. Regulation of complex formation of POB1/epsin/adaptor protein complex 2 by mitotic phosphorylation. J. Biol. Chem.275, 18399–18406 (2000). ArticleCAS Google Scholar
Slepnev, V.I., Ochoa, G.C., Butler, M.H., Grabs, D. & DeCamilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science281, 821–824 (1998). ArticleCAS Google Scholar
Negash, S., Wang, H.S., Gao, C., Ledee, D. & Zelenka, P. Cdk5 regulates cell-matrix and cell-cell adhesion in lens epithelial cells. J. Cell Sci.115, 2109–2117 (2002). CASPubMed Google Scholar
van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science262, 2050–2054 (1993). ArticleCAS Google Scholar
Stowell, M.H., Marks, B., Wigge, P. & McMahon, H.T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999). ArticleCAS Google Scholar
Wang, L.-H., Südhof, T.C. & Anderson, R.G. The appendage domain of α-adaptin is a high-affinity binding site for dynamin. J. Biol. Chem.270, 10079–10083 (1995). ArticleCAS Google Scholar
Micheva, K.D., Ramjaun, A.R., Kay, B.K. & McPherson, P.S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett.414, 308–312 (1997). ArticleCAS Google Scholar
Zhou, W., Merrick, B.A., Khaledi, M.G. & Tomer, K.B. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom.11, 273–282 (2000). ArticleCAS Google Scholar