Activation of the interferon system by short-interfering RNAs (original) (raw)

References

  1. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).
    Article CAS Google Scholar
  2. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).
    Article CAS Google Scholar
  3. Elbashir, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  4. Donze, O. & Picard, D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30, e46 (2002).
    Article Google Scholar
  5. Xia, H., Mao, Q., Paulson, H.L. & Davidson, B.L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol. 20, 1006–1010 (2002).
    Article CAS Google Scholar
  6. Hutvagner, G. & Zamore, P.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 297, 2056–2060 (2001).
    Article Google Scholar
  7. Jacque, J., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).
    Article CAS Google Scholar
  8. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002).
    Article CAS Google Scholar
  9. Haque, S.J. & Williams, B.R.G. Signal transduction in the interferon system. Semin. Oncol. 25, 14–22 (1998).
    CAS PubMed Google Scholar
  10. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).
    Article CAS Google Scholar
  11. Srivastava, S.P., Kumar, K.U. & Kaufman, R.J. Phosphorylation of eukaryotic translation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J. Biol. Chem. 273, 2416–2423 (1998).
    Article CAS Google Scholar
  12. Kumar, A., Haque, J., Lacoste, J., Hiscott, J. & Williams, B.R.G. Double-stranded RNA-dependent protein kinase activates transcription factor NF-κB by phosphorylating IκB. Proc. Natl Acad. Sci. USA 91, 6288–6292 (1994).
    Article CAS Google Scholar
  13. Williams, B.R., Gilbert, C.S. & Kerr, I.M. The respective roles of the protein kinase and pppA2′p5′A2′p5 A-activated endonucleases in the inhibition of protein synthesis by double-stranded RNA in rabbit reticulocyte lysates. Nucleic Acids Res. 6, 1335–1350 (1979).
    Article CAS Google Scholar
  14. Williams, B.R.G. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).
    Article CAS Google Scholar
  15. Silverman, R.H. in Ribonucleases: structure and function (eds G. D'Alessio and J. F. Riordan) Ch. 16, 515–551 (Academic Press, St Louis, 1997).
    Book Google Scholar
  16. Pellegrini, S., John, J., Shearer, M., Kerr, I.M. & Stark, G.R. Use of a selectable marker regulated by α interferon to obtain mutations in the signaling pathway. Mol. Cell Biol. 9, 4605–4612 (1989).
    Article CAS Google Scholar
  17. Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).
    Article CAS Google Scholar
  18. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).
    Article CAS Google Scholar
  19. Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated gene silencing. Biochem. Biophys. Res. Commun. 293, 1364–1369 (2002).
    Article CAS Google Scholar
  20. Yang, et al. Deficient signaling in mice devoid of the double-stranded RNA dependent protein kinase, PKR. EMBO J. 14, 6095–6106 (1995).
    Article CAS Google Scholar
  21. Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′-5′-oligoadenylate-dependent RNase L. EMBO J. 16, 3297–3304 (1997).
    Google Scholar
  22. Zhou, A., Paranjape, J.M., Der, S.D., Williams, B.R.G. & Silverman, R.H. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 258, 435–440 (1999).
    Article CAS Google Scholar
  23. Goh, K.C., Haque, S.J. & Williams, B.R.G. p38 MAP kinase is required for Stat1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J. 18, 5601–5608 (1999).
    Article CAS Google Scholar

Download references