Interactions of GGA3 with the ubiquitin sorting machinery (original) (raw)

References

  1. Boman, A.L., Zhang, C., Zhu, X. & Kahn, R.A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the _trans_-Golgi. Mol. Biol. Cell. 11, 1241–1255 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  2. Dell'Angelica, E.C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  3. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the _trans_-Golgi network and the vacuole/lysosome. J. Cell Biol. 49, 67–80 (2000).
    Article Google Scholar
  4. Puertollano, R., Aguilar, R.C., Gorshkova, I., Crouch, R.J. & Bonifacino, J.S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).
    Article CAS PubMed Google Scholar
  5. Zhu, Y., Doray, B., Poussu, A., Lehto, V.P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6- phosphate receptor. Science 292, 1716–1718 (2001).
    Article CAS PubMed Google Scholar
  6. Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Mammalian GGAs act together to sort mannose 6-phosphate receptors. J. Cell Biol. 163, 755–766 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  7. Puertollano, R., Randazzo, P., Hartnell, L.M., Presley, J. & Bonifacino, J.S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell. 105, 93–102 (2001).
    Article CAS PubMed Google Scholar
  8. Wasiak, S. et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  9. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5–Rabex-5 complex. EMBO J. 22, 78–88 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  10. Lui, W.W. et al. Binding partners for the COOH-terminal appendage domains of the GGAs and γ-adaptin. Mol. Biol. Cell 14, 2385–2398 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  11. Puertollano, R. et al. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the _trans_-Golgi network. Mol. Biol. Cell 14, 1545–1557 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. Klumperman, J. et al. Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J. Cell Biol. 121, 997–1010 (1993).
    Article CAS PubMed Google Scholar
  13. Futter, C.E., Pearse, A., Hewlett, L.J. & Hopkins, C.R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).
    Article CAS PubMed Google Scholar
  14. Longva, K.E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Bache, K.G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  16. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).
    Article CAS PubMed Google Scholar
  17. Bishop, N., Horman, A. & Woodman, P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein–ubiquitin conjugates. J. Cell Biol. 157, 91–101 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  18. Lu Q., Hope L.W., Brasch M., Reinhard C. & Cohen S.N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  19. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).
    Article CAS PubMed Google Scholar
  20. Shih, S.C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).
    Article CAS PubMed Google Scholar
  21. Mizuno, E, Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell. 14, 3675–3689 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  22. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J.S. & Hurley, J.H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).
    Article CAS PubMed Google Scholar
  23. Collins, B.M., Watson, P.J. & Owen, D.J. The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev. Cell 4, 321–332 (2003).
    Article CAS PubMed Google Scholar
  24. Suer, S., Misra, S., Saidi, L.F. & Hurley, J.H. Structure of the GAT domain of human GGA1: a syntaxin amino-terminal domain fold in an endosomal trafficking adaptor. Proc. Natl. Acad. Sci. USA 100, 4451–4456 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  25. Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M. & Pickart, C. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc. Natl Acad. Sci. USA 93, 861–866 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  26. Shih, S.C., Sloper-Mould, K.E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  27. Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).
    Article CAS PubMed Google Scholar
  28. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell. 113, 609–620 (2003).
    Article CAS PubMed Google Scholar
  29. Swanson, K.A, Kang, R.S, Stamenova, S.D, Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–606 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  30. Shiba, Y. et al. GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem. (in the press).
  31. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  32. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell. 11, 227–239 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  33. Wakasugi, M. et al. Predominant expression of the short form of GGA3 in human cell lines and tissues. Biochem. Biophys. Res. Commun. 306, 687–692 (2003).
    Article CAS PubMed Google Scholar
  34. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their vps27p/hrs/stam (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001).
    Article CAS PubMed Google Scholar

Download references