Wnt signalling induces maturation of Paneth cells in intestinal crypts (original) (raw)
References
Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell103, 311–320 (2000). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science275, 1784–1787 (1997). ArticleCASPubMed Google Scholar
Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCASPubMed Google Scholar
Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature382, 638–642 (1996). ArticleCASPubMed Google Scholar
Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell86, 391–399 (1996). ArticleCASPubMed Google Scholar
Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science280, 596–599 (1998). ArticleCASPubMed Google Scholar
Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S. & Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J.17, 1371–1384 (1998). ArticleCASPubMedPubMed Central Google Scholar
van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCASPubMed Google Scholar
Batlle, E. et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell111, 251–263 (2002). ArticleCASPubMed Google Scholar
Ayabe, T., Satchell, D. P., Wilson, C. L., Parks, W. C., Selsted, M. E. & Ouellette, A. J. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol.1, 113–118 (2000). ArticleCAS Google Scholar
Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem.276, 34686–34694 (2001). ArticleCASPubMed Google Scholar
Krause, R. et al. Molecular cloning and characterization of murine Mpgc60, a gene predominantly expressed in the intestinal tract. Differentiation63, 285–294 (1998). CASPubMed Google Scholar
Crawford, H. C. et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene18, 2883–2891 (1999). ArticleCASPubMed Google Scholar
Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci.59, 156–170 (2002). ArticleCASPubMed Google Scholar
Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem.277, 5219–5228 (2002). ArticleCASPubMed Google Scholar
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). ArticleCASPubMed Google Scholar
van Beest, M. et al. Sequence-specific high mobility group box factors recognize 10–12-base pair minor groove motifs. J. Biol. Chem.275, 27266–27273 (2000). CASPubMed Google Scholar
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature422, 522–526 (2003). ArticleCASPubMed Google Scholar
Hatzis, P. & Talianidis, I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell. Biol.21, 7320–7330 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, T. et al. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development128, 25–33 (2001). CASPubMed Google Scholar
Moller, P., Walczak, H., Reidl, S., Strater, J. & Krammer, P. H. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am. J. Pathol.149, 9–13 (1996). CASPubMedPubMed Central Google Scholar
Bancroft, J. D. & Stevens, A. Theory and Practice of Histological Techniques 4th edn, 304, 385–386 (Churchill Livingstone, New York, 1996). Google Scholar
Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science287, 1606–1609 (2000). ArticleCASPubMed Google Scholar
Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev.11, 547–553 (2001). ArticleCASPubMed Google Scholar
Marshman, E., Booth, C. & Potten, C. S. The intestinal epithelial stem cell. Bioessays.1, 91–98 (2002). Article Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCASPubMed Google Scholar
Selsted, M. E., Miller, S. I., Henschen, A. H. & Ouellette, A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol.118, 929–936 (1992). ArticleCASPubMed Google Scholar
Moorman, A. F., Houweling, A. C., de Boer, P. A. & Christoffels, V. M. Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem.49, 1–8 (2001). ArticleCASPubMed Google Scholar