Wnt signalling induces maturation of Paneth cells in intestinal crypts (original) (raw)

References

  1. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).
    Article CAS PubMed Google Scholar
  2. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).
    Article CAS PubMed Google Scholar
  3. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC −/− colon carcinoma. Science 275, 1784–1787 (1997).
    Article CAS PubMed Google Scholar
  4. Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).
    Article CAS PubMed Google Scholar
  5. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).
    Article CAS PubMed Google Scholar
  6. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).
    Article CAS PubMed Google Scholar
  7. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).
    Article CAS PubMed Google Scholar
  8. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S. & Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  9. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).
    Article CAS PubMed Google Scholar
  10. Batlle, E. et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).
    Article CAS PubMed Google Scholar
  11. Ayabe, T., Satchell, D. P., Wilson, C. L., Parks, W. C., Selsted, M. E. & Ouellette, A. J. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).
    Article CAS Google Scholar
  12. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001).
    Article CAS PubMed Google Scholar
  13. Krause, R. et al. Molecular cloning and characterization of murine Mpgc60, a gene predominantly expressed in the intestinal tract. Differentiation 63, 285–294 (1998).
    CAS PubMed Google Scholar
  14. Crawford, H. C. et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891 (1999).
    Article CAS PubMed Google Scholar
  15. Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).
    Article CAS PubMed Google Scholar
  16. Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem. 277, 5219–5228 (2002).
    Article CAS PubMed Google Scholar
  17. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).
    Article CAS PubMed Google Scholar
  18. van Beest, M. et al. Sequence-specific high mobility group box factors recognize 10–12-base pair minor groove motifs. J. Biol. Chem. 275, 27266–27273 (2000).
    CAS PubMed Google Scholar
  19. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).
    Article CAS PubMed Google Scholar
  20. Hatzis, P. & Talianidis, I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell. Biol. 21, 7320–7330 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  21. Ishikawa, T. et al. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33 (2001).
    CAS PubMed Google Scholar
  22. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  23. Moller, P., Walczak, H., Reidl, S., Strater, J. & Krammer, P. H. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am. J. Pathol. 149, 9–13 (1996).
    CAS PubMed PubMed Central Google Scholar
  24. Bancroft, J. D. & Stevens, A. Theory and Practice of Histological Techniques 4th edn, 304, 385–386 (Churchill Livingstone, New York, 1996).
    Google Scholar
  25. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science 287, 1606–1609 (2000).
    Article CAS PubMed Google Scholar
  26. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).
    Article CAS PubMed Google Scholar
  27. Marshman, E., Booth, C. & Potten, C. S. The intestinal epithelial stem cell. Bioessays. 1, 91–98 (2002).
    Article Google Scholar
  28. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).
    Article CAS PubMed Google Scholar
  29. Selsted, M. E., Miller, S. I., Henschen, A. H. & Ouellette, A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).
    Article CAS PubMed Google Scholar
  30. Moorman, A. F., Houweling, A. C., de Boer, P. A. & Christoffels, V. M. Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem. 49, 1–8 (2001).
    Article CAS PubMed Google Scholar

Download references