The human CENP-A centromeric nucleosome-associated complex (original) (raw)
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112, 407–421 (2003). ArticleCAS Google Scholar
Amor, D. J., Kalitsis, P., Sumer, H. & Choo, K. H. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol.14, 359–368 (2004). ArticleCAS Google Scholar
Amor, D. J. & Choo, K. H. Neocentromeres: role in human disease, evolution, and centromere study. Am. J. Hum. Genet.71, 695–714 (2002). Article Google Scholar
Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol.21, 133–153 (2005). ArticleCAS Google Scholar
Sullivan, B. A., Blower, M. D. & Karpen, G. H. Determining centromere identity: cyclical stories and forking paths. Nature Rev. Genet.2, 584–596 (2001). ArticleCAS Google Scholar
Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell2, 319–330 (2002). ArticleCAS Google Scholar
Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature430, 578–82 (2004). ArticleCAS Google Scholar
Cheeseman, I. M., Drubin, D. G. & Barnes, G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J. Cell Biol.157, 199–203 (2002). ArticleCAS Google Scholar
McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol.19, 519–539 (2003). ArticleCAS Google Scholar
Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA97, 1148–1153 (2000). ArticleCAS Google Scholar
Fukagawa, T., Pendon, C., Morris, J. & Brown, W. CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J.18, 4196–4209 (1999). ArticleCAS Google Scholar
Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell6, 793–807 (1995). ArticleCAS Google Scholar
Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol.160, 25–39 (2003). ArticleCAS Google Scholar
Goshima, G., Saitoh, S. & Yanagida, M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev.13, 1664–1677 (1999). ArticleCAS Google Scholar
Liu, S. T. et al. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nature Cell Biol.5, 341–345 (2003). ArticleCAS Google Scholar
Nishihashi, A. et al. CENP-I is essential for centromere function in vertebrate cells. Dev. Cell2, 463–476 (2002). ArticleCAS Google Scholar
Fukagawa, T. et al. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J.20, 4603–4617 (2001). ArticleCAS Google Scholar
Bomont, P., Maddox, P., Shah, J. V., Desai, A. B. & Cleveland, D. W. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J.24, 3927–3939 (2005). ArticleCAS Google Scholar
Mao, Y., Desai, A. & Cleveland, D. W. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J. Cell Biol.170, 873–880 (2005). ArticleCAS Google Scholar
Obuse, C. et al. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells9, 105–120 (2004). ArticleCAS Google Scholar
Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol.155, 1137–1145 (2001). ArticleCAS Google Scholar
Smith, S. & Stillman, B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J.10, 971–980 (1991). ArticleCAS Google Scholar
Jackson, V. In vivo studies on the dynamics of histone–DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry29, 719–731 (1990). ArticleCAS Google Scholar
Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol.136, 501–513 (1997). ArticleCAS Google Scholar
Eickbush, T. H. & Moudrianakis, E. N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry17, 4955–4964 (1978). ArticleCAS Google Scholar
Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol.109, 1963–1973 (1989). ArticleCAS Google Scholar
Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996). ArticleCAS Google Scholar
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell116, 51–61 (2004). ArticleCAS Google Scholar
Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nature Rev. Mol. Cell Biol.5, 296–304 (2004). ArticleCAS Google Scholar
Sarma, K. & Reinberg, D. Histone variants meet their match. Nature Rev. Mol. Cell Biol.6, 139–149 (2005). ArticleCAS Google Scholar
Hanissian, S. H. et al. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene23, 3700–3707 (2004). ArticleCAS Google Scholar
Minoshima, Y. et al. The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol. Cell Biol.25, 10315–10328 (2005). ArticleCAS Google Scholar
Bierie, B., Edwin, M., Joseph Melenhorst, J. & Hennighausen, L. The proliferation associated nuclear element (PANE1) is conserved between mammals and fish and preferentially expressed in activated lymphoid cells. Gene Expr. Patterns4, 389–395 (2004). ArticleCAS Google Scholar
Cheeseman, I. M. & Desai, A. A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci. STKE DOI:10.1126/stke.2662005pl1 (2005).
Earnshaw, W. C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol.104, 817–829 (1987). ArticleCAS Google Scholar
Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell70, 115–125 (1992). ArticleCAS Google Scholar
Sugata, N., Munekata, E. & Todokoro, K. Characterization of a novel kinetochore protein, CENP-H. J. Biol. Chem.274, 27343–27346 (1999). ArticleCAS Google Scholar
Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature400, 284–288 (1999). ArticleCAS Google Scholar
Okuwaki, M., Matsumoto, K., Tsujimoto, M. & Nagata, K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett.506, 272–276 (2001). ArticleCAS Google Scholar
Okuda, M. The role of nucleophosmin in centrosome duplication. Oncogene21, 6170–6174 (2002). ArticleCAS Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCAS Google Scholar
Regnier, V. et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell Biol.25, 3967–3981 (2005). ArticleCAS Google Scholar
Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol.143, 283–295 (1998). ArticleCAS Google Scholar
Shah, J. V. et al. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr. Biol.14, 942–952 (2004). CASPubMed Google Scholar
Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere–kinetochore complex: a repeat subunit model. J. Cell Biol.113, 1091–1110 (1991). ArticleCAS Google Scholar
Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell118, 715–729 (2004). ArticleCAS Google Scholar
Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science301, 1090–1093 (2003). ArticleCAS Google Scholar
Yoda, K., Morishita, S. & Hashimoto, K. Histone variant CENP-A purification, nucleosome reconstitution. Methods Enzymol.375, 253–269 (2004). ArticleCAS Google Scholar
MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA99, 7900–7905 (2002). ArticleCAS Google Scholar