HP1 and the dynamics of heterochromatin maintenance (original) (raw)
Flemming, W. Zell substanz, Kern und Zelltheilung, (Vogel, Leipzig, 1882). Book Google Scholar
Heitz, E. Das heterochromatin der Moose. Jb. Wiss. Bot.69, 728 (1928). Google Scholar
Sullivan, B. A., Blower, M. D. & Karpen, G. H. Determining centromere identity: cyclical stories and forking paths. Nature Rev. Genet.2, 584–596 (2001). ArticleCASPubMed Google Scholar
Dillon, N. & Festenstein, R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet.18, 252–258 (2002). ArticleCASPubMed Google Scholar
Vissel, B. & Choo, K. H. Mouse major (γ) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics5, 407–414 (1989). ArticleCASPubMed Google Scholar
Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol.3, 114–120 (2001). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). ArticleCASPubMed Google Scholar
Ekwall, K., Olsson, T., Turner, B. M., Cranston, G. & Allshire, R. C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell91, 1021–1032 (1997). ArticleCASPubMed Google Scholar
Francastel, C., Walters, M. C., Groudine, M. & Martin, D. I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell99, 259–269 (1999). ArticleCASPubMed Google Scholar
Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell3, 207–217 (1999). ArticleCASPubMed Google Scholar
Jeppesen, P., Mitchell, A., Turner, B. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma101, 322–332 (1992). ArticleCASPubMed Google Scholar
James, T. C. & Elgin, S. C. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol.6, 3862–3872 (1986). CASPubMedPubMed Central Google Scholar
James, T. C. et al. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol.50, 170–180 (1989). CASPubMed Google Scholar
Eissenberg, J. C. et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl Acad. Sci. USA87, 9923–9927 (1990). ArticleCASPubMedPubMed Central Google Scholar
Singh, P. B. et al. A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res.19, 789–794 (1991). ArticleCASPubMedPubMed Central Google Scholar
Minc, E., Courvalin, J. C. & Buendia, B. HP1γ associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet. Cell Genet.90, 279–284 (2000). ArticleCASPubMed Google Scholar
Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell7, 729–739 (2001). ArticleCASPubMed Google Scholar
Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays22, 124–137 (2000). ArticleCASPubMed Google Scholar
Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature416, 103–107 (2002). ArticleCASPubMed Google Scholar
Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J.19, 1587–1597 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cowieson, N. P., Partridge, J. F., Allshire, R. C. & McLaughlin, P. J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr. Biol.10, 517–525 (2000). ArticleCASPubMed Google Scholar
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17, 1870–1881 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Kirschmann, D. A. & Wallrath, L. L. Does heterochromatin protein 1 always follow code? Proc. Natl Acad. Sci. USA99, 16462–16469 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J.18, 1923–1938 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science301, 798–802 (2003). ArticleCASPubMed Google Scholar
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein–RNA interaction modules. Nature407, 405–409 (2000). ArticleCASPubMed Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet.30, 329–334 (2002). This paper shows that a RNA component is required for the maintenance of the mouse pericentric-heterochromatin organization. ArticlePubMed Google Scholar
Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep.3, 975–981 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sugimoto, K., Yamada, T., Muro, Y. & Himeno, M. Human homolog of Drosophila heterochromatin-associated protein 1 (HP1) is a DNA-binding protein which possesses a DNA-binding motif with weak similarity to that of human centromere protein C (CENP-C). J. Biochem. (Tokyo)120, 153–159 (1996). ArticleCAS Google Scholar
Meehan, R. R., Kao, C. F. & Pennings, S. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. Embo J.22, 3164–3174 (2003). ArticleCASPubMedPubMed Central Google Scholar
Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol.10, 27–30 (2000). ArticleCASPubMed Google Scholar
Le Douarin, B. et al. A possible involvement of TIF1α and TIF1β in the epigenetic control of transcription by nuclear receptors. Embo J.15, 6701–6715 (1996). ArticleCASPubMedPubMed Central Google Scholar
Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res.31, 2305–2312 (2003). ArticleCASPubMedPubMed Central Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCASPubMed Google Scholar
Robertson, K. D. DNA methylation and chromatin — unraveling the tangled web. Oncogene21, 5361–5379 (2002). ArticleCASPubMed Google Scholar
Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4, 529–540 (1999). ArticleCASPubMed Google Scholar
Mello, J. A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev.11, 136–141 (2001). ArticleCASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCASPubMed Google Scholar
Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell12, 1591–1598 (2003). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell12, 1577–1589 (2003). ArticleCASPubMed Google Scholar
Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genet.30, 77–80 (2002). ArticleCASPubMed Google Scholar
Chadwick, B. P. & Willard, H. F. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum. Mol. Genet.12, 2167–2178 (2003). ArticleCASPubMed Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet.2, 59–67 (2001). ArticleCASPubMed Google Scholar
David, G., Turner, G. M., Yao, Y., Protopopov, A. & DePinho, R. A. mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev.17, 2396–2405 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rudert, F., Bronner, S., Garnier, J. M. & Dolle, P. Transcripts from opposite strands of γ satellite DNA are differentially expressed during mouse development. Mamm. Genome6, 76–83 (1995). ArticleCASPubMed Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). ArticleCASPubMed Google Scholar
Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science299, 721–725 (2003). ArticleCASPubMed Google Scholar
Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science299, 719–721 (2003). References 57 and 58 demonstrate that the heterochromatin protein HP1 is highly dynamic within stable heterochromatin domains. ArticleCASPubMed Google Scholar
Wolffe, A. P. & Brown, D. D. DNA replication in vitro erases a Xenopus 5S RNA gene transcription complex. Cell47, 217–227 (1986). ArticleCASPubMed Google Scholar
Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. Embo J.21, 2231–2241 (2002). ArticleCASPubMedPubMed Central Google Scholar
Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet.32, 627–632 (2002). ArticleCASPubMed Google Scholar
McDowell, T. L. et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl Acad. Sci. USA96, 13983–13988 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, A. L. et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1α. Embo J.21, 5797–5806 (2002). ArticleCASPubMedPubMed Central Google Scholar
Taddei, A., Roche, D., Sibarita, J., Turner, B. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol.147, 1153–1166 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sogo, J. M. & Laskey, R. A. in Chromatin Structure and Gene Expression (ed. Elgin, S. C. R.) 49–71 (Oxford Univ. Press, New York, 1995) Google Scholar
Shibahara, K. I. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell96, 575–585 (1999). ArticleCASPubMed Google Scholar
Moggs, J. G. et al. A CAF-1/PCNA mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol.20, 1206–1218 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA92, 1237–1241 (1995). ArticleCASPubMedPubMed Central Google Scholar
Vermaak, D., Ahmad, K. & Henikoff, S. Maintenance of chromatin states: an open-and-shut case. Curr. Opin. Cell Biol.15, 266–274 (2003). ArticleCASPubMed Google Scholar
Ahmad, K. & Henikoff, S. Epigenetic consequences of nucleosome dynamics. Cell111, 281–284 (2002). ArticleCASPubMed Google Scholar
Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell9, 1191–1200 (2002). ArticleCASPubMed Google Scholar
Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nature Rev. Genet.2, 919–929 (2001). ArticleCASPubMed Google Scholar
Park, Y. & Kuroda, M. I. Epigenetic aspects of X-chromosome dosage compensation. Science293, 1083–1085 (2001). ArticleCASPubMed Google Scholar
Matzke, M., Matzke, A. J. & Kooter, J. M. RNA: guiding gene silencing. Science293, 1080–1083 (2001). ArticleCASPubMed Google Scholar
Verheggen, C., Le Panse, S., Almouzni, G. & Hernandez-Verdun, D. Maintenance of nucleolar machineries and pre-rRNAs in remnant nucleolus of erythrocyte nuclei and remodeling in Xenopus egg extracts. Exp. Cell Res.269, 23–34 (2001). ArticleCASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ArticleCASPubMed Google Scholar
Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA100, 193–198 (2003). ArticleCASPubMed Google Scholar
Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res.11, 137–146 (2003). References 81 and 83 demonstrate links between the RNA interference pathway and heterochromatin silencing in fission yeast. ArticleCASPubMed Google Scholar
Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA97, 5237–5242 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science297, 1831 (2002). ArticleCASPubMed Google Scholar
Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet.35, 213–214 (2003). ArticleCASPubMed Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). ArticleCASPubMed Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). ArticleCASPubMed Google Scholar
Stein, P., Svoboda, P., Anger, M. & Schultz, R. M. RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA9, 187–192 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402, 187–191 (1999). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ArticleCASPubMed Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ArticleCASPubMed Google Scholar
Soppe, W. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. Embo J.21, 6549–6559 (2002). ArticleCASPubMedPubMed Central Google Scholar
Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl Acad. Sci. USA98, 14428–14433 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent on DNA synthesis. Cell116, 51–61 (2004). This paper describes how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways. ArticleCASPubMed Google Scholar