Regulation of mitotic entry by microcephalin and its overlap with ATR signalling (original) (raw)

References

  1. Xu, X., Lee, J. & Stern, D. F. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J. Biol. Chem. 279, 34091–34094 (2004).
    Article CAS Google Scholar
  2. Lin, S. Y., Rai, R., Li, K., Xu, Z. X. & Elledge, S.J. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1–Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc. Natl Acad. Sci. USA 102, 15105–15109 (2005).
    Article CAS Google Scholar
  3. Woods, C. G., Bond, J. & Enard, W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. 76, 717–728 (2005).
    Article CAS Google Scholar
  4. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).
    Article CAS Google Scholar
  5. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).
    Article CAS Google Scholar
  6. Alderton, G. K. et al. Seckel syndrome exhibits cellular features demonstrating defects in the ATR signalling pathway. Hum. Mol. Genet. 13, 3127–3138 (2004).
    Article CAS Google Scholar
  7. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).
    Article CAS Google Scholar
  8. Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 11, 71–77 (2001).
    Article CAS Google Scholar
  9. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair 3, 959–967 (2004).
    Article CAS Google Scholar
  10. Stiff, T. et al. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208 (2005).
    Article CAS Google Scholar
  11. Sengupta, S. et al. Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest. J. Cell Biol. 166, 801–813 (2004).
    Article CAS Google Scholar
  12. Zachos, G., Rainey, M. D. & Gillespie, D. A. Chk1-dependent S–M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol. Cell Biol. 25, 563–574 (2005).
    Article CAS Google Scholar
  13. Feijoo, C. et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J. Cell Biol. 154, 913–923 (2001).
    Article CAS Google Scholar
  14. Fenech, M. & Morley, A. A. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat. Res. 161, 193–198 (1986).
    Article CAS Google Scholar
  15. Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).
    Article CAS Google Scholar
  16. Molinari, M., Mercurio, C., Dominguez, J., Goubin, F. & Draetta, G.F. Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep. 1, 71–79 (2000).
    Article CAS Google Scholar
  17. Mailand, N. et al. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21, 5911–5920 (2002).
    Article CAS Google Scholar
  18. Chen, M. S., Ryan, C. E. & Piwnica-Worms, H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14–3-3 binding. Mol. Cell Biol. 23, 7488–7497 (2003).
    Article CAS Google Scholar
  19. Uto, K., Inoue, D., Shimuta, K., Nakajo, N. & Sagata, N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J. 23, 3386–3396 (2004).
    Article CAS Google Scholar
  20. Sorensen, C. S., Syljuasen, R. G., Lukas, J. & Bartek, J. ATR, claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3, 941–945 (2004).
    Article CAS Google Scholar
  21. Donzelli, M. & Draetta, G. F. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671–677 (2003).
    Article CAS Google Scholar
  22. Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell 6, 649–659 (2000).
    Article CAS Google Scholar
  23. Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).
    Article CAS Google Scholar
  24. Tercero, J. A., Labib, K. & Diffley, J.F. DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J. 19, 2082–2093 (2000).
    Article CAS Google Scholar
  25. Gautier, J., Solomon, M. J., Booher, R.N.J.F., Bazan, J.F. & Kirschner, M. W. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67, 197–211 (1991).
    Article CAS Google Scholar
  26. Beier, H. & Grimm, M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 29, 4767–4782 (2001).
    Article CAS Google Scholar
  27. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001).
    Article CAS Google Scholar
  28. Manke, I. A. et al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17, 37–48 (2005).
    Article CAS Google Scholar
  29. Trimborn, M. et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. 75, 261–266 (2004).
    Article CAS Google Scholar
  30. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).
    Article CAS Google Scholar

Download references