A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells (original) (raw)
References
Cowin, P., Rowlands, T. M. & Hatsell, S. J. Cadherins and catenins in breast cancer. Curr. Opin. Cell Biol.17, 499–508 (2005). ArticleCAS Google Scholar
Chu, E. Y. et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development131, 4819–4829 (2004). ArticleCAS Google Scholar
Reya, T. & Clevers, H. Wnt signaling in stem cells and cancer. Nature434, 843–850 (2005). ArticleCAS Google Scholar
Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA100, 15853–15858 (2003). ArticleCAS Google Scholar
Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101, 4158–4163 (2004). ArticleCAS Google Scholar
Rowlands, T. M., Pechenkina, I. V., Hatsell, S. J., Pestell, R. G. & Cowin, P. Dissecting the roles of β-catenin and cyclin D1 during mammary development and neoplasia. Proc. Natl Acad. Sci. USA100, 11400–11405 (2003). ArticleCAS Google Scholar
Bafico, A., Liu, G., Goldin, L., Harris, V. & Aaronson, S. A. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell6, 497–506 (2004). ArticleCAS Google Scholar
Teuliere, J. et al. Targeted activation of β-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development132, 267–277 (2005). ArticleCAS Google Scholar
Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA103, 3799–3804 (2006). ArticleCAS Google Scholar
Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development131, 5817–5824 (2004). ArticleCAS Google Scholar
Jamora, C. et al. A signaling pathway involving TGF-β2 and Snail in hair follicle morphogenesis. PLoS Biol.3, e11 (2005). Article Google Scholar
Salahshor, S. & Woodgett, J. R. The links between axin and carcinogenesis. J. Clin. Pathol.58, 225–236 (2005). ArticleCAS Google Scholar
Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol. Cell Biol.21, 8184–8188 (2001). ArticleCAS Google Scholar
Zhou, B. P. et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biol.6, 931–940 (2004). ArticleCAS Google Scholar
Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development132, 3151–3161 (2005). ArticleCAS Google Scholar
Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell8, 197–209 (2005). ArticleCAS Google Scholar
Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell113, 207–219 (2003). ArticleCAS Google Scholar
Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor Snail. J. Biol. Chem.280, 11740–11748 (2005). ArticleCAS Google Scholar
Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase, MT1–MMP. J. Cell Biol.167, 769–781 (2004). ArticleCAS Google Scholar
Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA98, 10356–10361 (2001). ArticleCAS Google Scholar
Kolligs, F. T., Hu, G., Dang, C. V. & Fearon, E. R. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol.19, 5696–5706 (1999). ArticleCAS Google Scholar
Stoothoff, W. H., Bailey, C. D. C., Mi, K., Lin, S. C. & Johnson, G. V. W. Axin negatively affects tau phosphorylation by glycogen synthase kinase 3β. J. Neurochem.83, 904–913 (2002). ArticleCAS Google Scholar
Cong, F. & Varmus, H. Nuclear–cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc. Natl Acad. Sci. USA101, 2882–2887 (2004). ArticleCAS Google Scholar
Wiechens, N., Heinle, K., Englmeier, L., Schohl, A. & Fagotto, F. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt–β-catenin pathway. J. Biol. Chem.279, 5263–5267 (2004). ArticleCAS Google Scholar
Chia, I. V. & Costantini, F. Mouse Axin and Axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol.25, 4371–4376 (2005). ArticleCAS Google Scholar
Salas, T. R. et al. Glycogen synthase kinase-3β is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem.279, 19191–19200 (2004). ArticleCAS Google Scholar
Dajani, R. et al. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J.22, 494–501 (2003). ArticleCAS Google Scholar
Jope, R. S. & Johnson, G. V. W. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci.29, 95–102 (2004). ArticleCAS Google Scholar
Yu, H. M. I. et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development132, 1995–2005 (2005). ArticleCAS Google Scholar
Franci, C. et al. Expression of Snail protein in tumor–stroma interface. Oncogene25, 5134–5144 (2006). ArticleCAS Google Scholar