A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells (original) (raw)

References

  1. Cowin, P., Rowlands, T. M. & Hatsell, S. J. Cadherins and catenins in breast cancer. Curr. Opin. Cell Biol. 17, 499–508 (2005).
    Article CAS Google Scholar
  2. Chu, E. Y. et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131, 4819–4829 (2004).
    Article CAS Google Scholar
  3. Reya, T. & Clevers, H. Wnt signaling in stem cells and cancer. Nature 434, 843–850 (2005).
    Article CAS Google Scholar
  4. Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA 100, 15853–15858 (2003).
    Article CAS Google Scholar
  5. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).
    Article CAS Google Scholar
  6. Rowlands, T. M., Pechenkina, I. V., Hatsell, S. J., Pestell, R. G. & Cowin, P. Dissecting the roles of β-catenin and cyclin D1 during mammary development and neoplasia. Proc. Natl Acad. Sci. USA 100, 11400–11405 (2003).
    Article CAS Google Scholar
  7. Bafico, A., Liu, G., Goldin, L., Harris, V. & Aaronson, S. A. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6, 497–506 (2004).
    Article CAS Google Scholar
  8. Teuliere, J. et al. Targeted activation of β-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132, 267–277 (2005).
    Article CAS Google Scholar
  9. Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA 103, 3799–3804 (2006).
    Article CAS Google Scholar
  10. Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131, 5817–5824 (2004).
    Article CAS Google Scholar
  11. Jamora, C. et al. A signaling pathway involving TGF-β2 and Snail in hair follicle morphogenesis. PLoS Biol. 3, e11 (2005).
    Article Google Scholar
  12. Salahshor, S. & Woodgett, J. R. The links between axin and carcinogenesis. J. Clin. Pathol. 58, 225–236 (2005).
    Article CAS Google Scholar
  13. Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol. Cell Biol. 21, 8184–8188 (2001).
    Article CAS Google Scholar
  14. Zhou, B. P. et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biol. 6, 931–940 (2004).
    Article CAS Google Scholar
  15. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development 132, 3151–3161 (2005).
    Article CAS Google Scholar
  16. Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).
    Article CAS Google Scholar
  17. Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–219 (2003).
    Article CAS Google Scholar
  18. Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor Snail. J. Biol. Chem. 280, 11740–11748 (2005).
    Article CAS Google Scholar
  19. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase, MT1–MMP. J. Cell Biol. 167, 769–781 (2004).
    Article CAS Google Scholar
  20. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).
    Article CAS Google Scholar
  21. Kolligs, F. T., Hu, G., Dang, C. V. & Fearon, E. R. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol. 19, 5696–5706 (1999).
    Article CAS Google Scholar
  22. Stoothoff, W. H., Bailey, C. D. C., Mi, K., Lin, S. C. & Johnson, G. V. W. Axin negatively affects tau phosphorylation by glycogen synthase kinase 3β. J. Neurochem. 83, 904–913 (2002).
    Article CAS Google Scholar
  23. Cong, F. & Varmus, H. Nuclear–cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc. Natl Acad. Sci. USA 101, 2882–2887 (2004).
    Article CAS Google Scholar
  24. Wiechens, N., Heinle, K., Englmeier, L., Schohl, A. & Fagotto, F. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt–β-catenin pathway. J. Biol. Chem. 279, 5263–5267 (2004).
    Article CAS Google Scholar
  25. Chia, I. V. & Costantini, F. Mouse Axin and Axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 25, 4371–4376 (2005).
    Article CAS Google Scholar
  26. Salas, T. R. et al. Glycogen synthase kinase-3β is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem. 279, 19191–19200 (2004).
    Article CAS Google Scholar
  27. Dajani, R. et al. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J. 22, 494–501 (2003).
    Article CAS Google Scholar
  28. Jope, R. S. & Johnson, G. V. W. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102 (2004).
    Article CAS Google Scholar
  29. Yu, H. M. I. et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132, 1995–2005 (2005).
    Article CAS Google Scholar
  30. Franci, C. et al. Expression of Snail protein in tumor–stroma interface. Oncogene 25, 5134–5144 (2006).
    Article CAS Google Scholar

Download references