- Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).
Article CAS Google Scholar
- Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nature Rev. Mol. Cell Biol. 3, 155–166 (2002).
Article CAS Google Scholar
- Behrens, J., Lowrick, O., Klein-Hitpass, L. & Birchmeier, W. The E-cadherin promoter: functional analysis of a G·C-rich region and an epithelial cell-specific palindromic regulatory element. Proc. Natl Acad. Sci. USA 88, 11495–11499 (1991).
Article CAS Google Scholar
- Birchmeier, W., Behrens, J., Weidner, K.M., Frixen, U.H. & Schipper, J. Dominant and recessive genes involved in tumor cell invasion. Curr. Opin. Cell Biol. 3, 832–840 (1991).
Article CAS Google Scholar
- Hajra, K.M., Ji, X. & Fearon, E.R. Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18, 7274–7279 (1999).
Article CAS Google Scholar
- Ji, X., Woodard, A.S., Rimm, D.L. & Fearon, E.R. Transcriptional defects underlie loss of E-cadherin expression in breast cancer. Cell Growth Differ. 8, 773–778 (1997).
CAS PubMed Google Scholar
- Giroldi, L.A. et al. Role of E boxes in the repression of E-cadherin expression. Biochem. Biophys. Res. Commun. 241, 453–458 (1997).
Article CAS Google Scholar
- Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84–89 (2000).
Article CAS Google Scholar
- Guaita, S. et al. Snail induction of epithelial-to-mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J. Biol. Chem. 277, 39209–39216 (2002).
Article CAS Google Scholar
- Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000).
Article CAS Google Scholar
- Comijn, J. et al. The two-handed E-box-binding zinc-finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001).
Article CAS Google Scholar
- Bolos, V. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial-to-mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511 (2003).
Article CAS Google Scholar
- Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–219 (2003).
Article CAS Google Scholar
- Peinado, H., Quintanilla, M. & Cano, A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278, 21113–21123 (2003).
Article CAS Google Scholar
- Doble, B.W. & Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).
Article CAS Google Scholar
- Kim, L. & Kimmel, A.R. GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr. Opin. Genet. Dev. 10, 508–514 (2000).
Article CAS Google Scholar
- Harwood, A.J. Regulation of GSK-3: a cellular multiprocessor. Cell 105, 821–824 (2001).
Article CAS Google Scholar
- Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769–776 (2001).
Article CAS Google Scholar
- Muratani, M. & Tansey, W.P. How the ubiquitin-proteasome system controls transcription. Nature Rev. Mol. Cell Biol. 4, 192–201 (2003).
Article CAS Google Scholar
- Stambolic, V., Ruel, L. & Woodgett, J.R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).
Article CAS Google Scholar
- Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer 1, 55–67 (2001).
Article CAS Google Scholar
- Karin, M., Cao, Y., Greten, F.R. & Li, Z.W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).
Article CAS Google Scholar
- Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCF(βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003).
Article CAS Google Scholar
- Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F-box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).
Article CAS Google Scholar
- Dominguez, D. et al. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell. Biol. 23, 5078–5089 (2003).
Article CAS Google Scholar
- Blanco, M.J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241–3246 (2002).
Article CAS Google Scholar
- Cheng, C.W. et al. Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 20, 3814–3823 (2001).
Article CAS Google Scholar
- Rosivatz, E. et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am. J. Pathol. 161, 1881–1891 (2002).
CAS Google Scholar
- Sugimachi, K. et al. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin. Cancer Res. 9, 2657–2664 (2003).
CAS PubMed Google Scholar
- Thiery, J.P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003).
Article CAS Google Scholar
- Bijur, G.N. & Jope, R.S. Glycogen synthase kinase-3β is highly activated in nuclei and mitochondria. Neuroreport 14, 2415–2419 (2003).
Article CAS Google Scholar
- Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P. & Crabtree, G.R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930–1934 (1997).
Article CAS Google Scholar
- Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).
Article CAS Google Scholar
- Grille, S.J. et al. The protein kinase Akt induces epithelial-mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 63, 2172–2178 (2003).
CAS PubMed Google Scholar
- Kim, K., Pang, K.M., Evans, M. & Hay, E.D. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell 11, 3509–3523 (2000).
Article CAS Google Scholar
- Zhou, B.P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).
Article CAS Google Scholar
- Zhou, B.P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).
Article CAS Google Scholar
- Deng, J. et al. β-catenin interacts with and inhibits NF-κB in human colon and breast cancer. Cancer Cell 2, 323–334 (2002).
Article CAS Google Scholar
- Zhou, B.P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway. J. Biol. Chem. 275, 8027–8031 (2000).
Article CAS Google Scholar
- Camp, R.L., Rimm, E.B. & Rimm, D.L. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 86, 2259–2265 (1999).
Article CAS Google Scholar
- Xia, W. et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin. Cancer Res. 10, 3815–3824 (2004).
Article CAS Google Scholar
- Gunduz, M. et al. Genomic structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Res. 60, 3143–3146 (2000).
CAS PubMed Google Scholar