pVHL and GSK3β are components of a primary cilium-maintenance signalling network (original) (raw)

References

  1. Davenport, J. R. & Yoder, B. K. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol. 289, F1159–F1169 (2005).
    Article CAS Google Scholar
  2. Eley, L., Yates, L. M. & Goodship, J. A. Cilia and disease. Curr. Opin. Genet. Dev. 15, 308–314 (2005).
    Article CAS Google Scholar
  3. Choyke, P. L. et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. Am. J. Roentgenol. 159, 1229–1234 (1992).
    Article CAS Google Scholar
  4. Solomon, D. & Schwartz, A. Renal pathology in von Hippel-Lindau disease. Human Pathol. 19, 1072–1079 (1988).
    Article CAS Google Scholar
  5. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).
    Article CAS Google Scholar
  6. Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nature Cell Biol. 5, 64–70 (2003).
    Article CAS Google Scholar
  7. Lolkema, M. P. et al. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery. Exp. Cell Res. 301, 139–146 (2004).
    Article CAS Google Scholar
  8. Praetorius, H. A., Praetorius, J., Nielsen, S., Frokiaer, J. & Spring, K. R. β1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am. J. Physiol. Renal. Physiol. 287, F969–F978 (2004).
    Article CAS Google Scholar
  9. Schneider, L. et al. PDGFRα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).
    Article CAS Google Scholar
  10. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).
    Article CAS Google Scholar
  11. Praetorius, H. A. & Spring, K. R. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69–76 (2003).
    Article CAS Google Scholar
  12. Alieva, I. B., Gorgidze, L. A., Komarova, Y. A., Chernobelskaya, O. A. & Vorobjev, I. A. Experimental model for studying the primary cilia in tissue culture cells. Membr. Cell Biol. 12, 895–905 (1999).
    CAS PubMed Google Scholar
  13. Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc. Natl Acad. Sci. USA 98, 1583–1588 (2001).
    Article CAS Google Scholar
  14. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).
    Article CAS Google Scholar
  15. Esteban, M. A., Harten, S. K., Tran, M. G. & Maxwell, P. H. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J. Am. Soc. Nephrol. 17, 1801–1806 (2006).
    Article CAS Google Scholar
  16. Lutz, M. S. & Burk, R. D. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res. 66, 6903–6907 (2006).
    Article CAS Google Scholar
  17. Schermer, B. et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J. Cell Biol. 175, 547–554 (2006).
    Article CAS Google Scholar
  18. Zhou, F. Q. & Snider, W. D. Cell biology. GSK-3β and microtubule assembly in axons. Science 308, 211–214 (2005).
    Article CAS Google Scholar
  19. Wilson, N. F. & Lefebvre, P. A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell 3, 1307–1319 (2004).
    Article CAS Google Scholar
  20. Hergovich, A. et al. Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol. Cell Biol. 26, 5784–5796 (2006).
    Article CAS Google Scholar
  21. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).
    Article CAS Google Scholar
  22. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G., Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).
    Article CAS Google Scholar
  23. Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406, 86–90 (2000).
    Article CAS Google Scholar
  24. Knauth, K., Bex, C., Jemth, P. & Buchberger, A. Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1α interactions. Oncogene 25, 370–377 (2006).
    Article CAS Google Scholar
  25. Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 359, 1–16 (2001).
    Article CAS Google Scholar
  26. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).
    Article CAS Google Scholar
  27. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA 100, 5286–5291 (2003).
    Article CAS Google Scholar
  28. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).
    Article CAS Google Scholar
  29. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66, 2576–2583 (2006).
    Article CAS Google Scholar
  30. Brauch, H. et al. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum. Genet. 95, 551–556 (1995).
    Article CAS Google Scholar
  31. Chen, F. et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum. Mutat. 5, 66–75 (1995).
    Article CAS Google Scholar
  32. Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).
    Article CAS Google Scholar
  33. Pastorekova, S., Zavadova, Z., Kostal, M., Babusikova, O. & Zavada, J. A novel quasi-viral agent, MaTu, is a two-component system. Virology 187, 620–626 (1992).
    Article CAS Google Scholar
  34. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999).
    Article CAS Google Scholar

Download references