pVHL and GSK3β are components of a primary cilium-maintenance signalling network (original) (raw)
References
Davenport, J. R. & Yoder, B. K. An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am. J. Physiol. Renal Physiol.289, F1159–F1169 (2005). ArticleCAS Google Scholar
Eley, L., Yates, L. M. & Goodship, J. A. Cilia and disease. Curr. Opin. Genet. Dev.15, 308–314 (2005). ArticleCAS Google Scholar
Choyke, P. L. et al. The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients. Am. J. Roentgenol.159, 1229–1234 (1992). ArticleCAS Google Scholar
Solomon, D. & Schwartz, A. Renal pathology in von Hippel-Lindau disease. Human Pathol.19, 1072–1079 (1988). ArticleCAS Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCAS Google Scholar
Hergovich, A., Lisztwan, J., Barry, R., Ballschmieter, P. & Krek, W. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nature Cell Biol.5, 64–70 (2003). ArticleCAS Google Scholar
Lolkema, M. P. et al. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery. Exp. Cell Res.301, 139–146 (2004). ArticleCAS Google Scholar
Praetorius, H. A., Praetorius, J., Nielsen, S., Frokiaer, J. & Spring, K. R. β1-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signaling. Am. J. Physiol. Renal. Physiol.287, F969–F978 (2004). ArticleCAS Google Scholar
Schneider, L. et al. PDGFRα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol.15, 1861–1866 (2005). ArticleCAS Google Scholar
Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol.184, 71–79 (2001). ArticleCAS Google Scholar
Praetorius, H. A. & Spring, K. R. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol.191, 69–76 (2003). ArticleCAS Google Scholar
Alieva, I. B., Gorgidze, L. A., Komarova, Y. A., Chernobelskaya, O. A. & Vorobjev, I. A. Experimental model for studying the primary cilia in tissue culture cells. Membr. Cell Biol.12, 895–905 (1999). CASPubMed Google Scholar
Haase, V. H., Glickman, J. N., Socolovsky, M. & Jaenisch, R. Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc. Natl Acad. Sci. USA98, 1583–1588 (2001). ArticleCAS Google Scholar
Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet.37, 1289–1295 (2005). ArticleCAS Google Scholar
Esteban, M. A., Harten, S. K., Tran, M. G. & Maxwell, P. H. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J. Am. Soc. Nephrol.17, 1801–1806 (2006). ArticleCAS Google Scholar
Lutz, M. S. & Burk, R. D. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res.66, 6903–6907 (2006). ArticleCAS Google Scholar
Schermer, B. et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J. Cell Biol.175, 547–554 (2006). ArticleCAS Google Scholar
Zhou, F. Q. & Snider, W. D. Cell biology. GSK-3β and microtubule assembly in axons. Science308, 211–214 (2005). ArticleCAS Google Scholar
Wilson, N. F. & Lefebvre, P. A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell3, 1307–1319 (2004). ArticleCAS Google Scholar
Hergovich, A. et al. Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol. Cell Biol.26, 5784–5796 (2006). ArticleCAS Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995). ArticleCAS Google Scholar
Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G., Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell8, 25–33 (2005). ArticleCAS Google Scholar
Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406, 86–90 (2000). ArticleCAS Google Scholar
Knauth, K., Bex, C., Jemth, P. & Buchberger, A. Renal cell carcinoma risk in type 2 von Hippel-Lindau disease correlates with defects in pVHL stability and HIF-1α interactions. Oncogene25, 370–377 (2006). ArticleCAS Google Scholar
Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J.359, 1–16 (2001). ArticleCAS Google Scholar
Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell1, 459–468 (2002). ArticleCAS Google Scholar
Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl Acad. Sci. USA100, 5286–5291 (2003). ArticleCAS Google Scholar
Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol.151, 709–718 (2000). ArticleCAS Google Scholar
Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res66, 2576–2583 (2006). ArticleCAS Google Scholar
Brauch, H. et al. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum. Genet.95, 551–556 (1995). ArticleCAS Google Scholar
Chen, F. et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum. Mutat.5, 66–75 (1995). ArticleCAS Google Scholar
Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA93, 8455–8459 (1996). ArticleCAS Google Scholar
Pastorekova, S., Zavadova, Z., Kostal, M., Babusikova, O. & Zavada, J. A novel quasi-viral agent, MaTu, is a two-component system. Virology187, 620–626 (1992). ArticleCAS Google Scholar
Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev.13, 1822–1833 (1999). ArticleCAS Google Scholar