Positional stability of single double-strand breaks in mammalian cells (original) (raw)
References
Kanaar, R., Hoeijmakers, J. H. & van Gent, D. C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol.8, 483–489 (1998). ArticleCAS Google Scholar
Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet27, 247–254 (2001). ArticleCAS Google Scholar
Elliott, B. & Jasin, M. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci.59, 373–385 (2002). ArticleCAS Google Scholar
Meaburn, K. J., Misteli, T. & Soutoglou, E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol.17, 80–90 (2007). ArticleCAS Google Scholar
Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science290, 138–141 (2000). ArticleCAS Google Scholar
Aten, J. A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science303, 92–95 (2004). ArticleCAS Google Scholar
Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science280, 590–592 (1998). ArticleCAS Google Scholar
Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol.172, 823–834 (2006). ArticleCAS Google Scholar
Lisby, M., Antunez de Mayolo, A., Mortensen, U. H. & Rothstein, R. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle2, 479–483 (2003). ArticleCAS Google Scholar
Lobachev, K., Vitriol, E., Stemple, J., Resnick, M. A. & Bloom, K. Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr. Biol.14, 2107–2112 (2004). ArticleCAS Google Scholar
Kaye, J. A. et al. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr. Biol.14, 2096–2106 (2004). ArticleCAS Google Scholar
Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA93, 13949–13954 (1996). ArticleCAS Google Scholar
Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol.5, 572–577 (2003). ArticleCAS Google Scholar
Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol.14, 8096–8106 (1994). ArticleCAS Google Scholar
Martinez, E. D., Rayasam, G. V., Dull, A. B., Walker, D. A. & Hager, G. L. An estrogen receptor chimera senses ligands by nuclear translocation. J. Steroid Biochem. Mol. Biol.97, 307–321 (2005). ArticleCAS Google Scholar
Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol.170, 201–211 (2005). ArticleCAS Google Scholar
Villalobos, M. J. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR. Methods Mol. Biol.314, 109–121 (2006). ArticleCAS Google Scholar
Vazquez, J., Belmont, A. S. & Sedat, J. W. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr. Biol.11, 1227–1239 (2001). ArticleCAS Google Scholar
Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell112, 751–764 (2003). ArticleCAS Google Scholar
Bornfleth, H., Edelmann, P., Zink, D., Cremer, T. & Cremer, C. Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J.77, 2871–2886 (1999). ArticleCAS Google Scholar
Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell114, 371–383 (2003). ArticleCAS Google Scholar
Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell114, 359–370 (2003). ArticleCAS Google Scholar
Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell21, 201–214 (2006). ArticleCAS Google Scholar
Downs, J. A. & Jackson, S. P. A means to a DNA end: the many roles of Ku. Nature Rev. Mol. Cell Biol.5, 367–378 (2004). ArticleCAS Google Scholar
Bassing, C. H. & Alt, F. W. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle3, 149–153 (2004). ArticleCAS Google Scholar
Wyman, C. & Kanaar, R. Chromosome organization: reaching out to embrace new models. Curr. Biol.12, R446–R448 (2002). ArticleCAS Google Scholar
Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol.5, 675–679 (2003). ArticleCAS Google Scholar
Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol4, e138 (2006). Article Google Scholar
Soutoglou, E. et al. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners. Mol. Cell Biol.25, 4092–4104 (2005). ArticleCAS Google Scholar
Lee, A. C., Fernandez-Capetillo, O., Pisupati, V., Jackson, S. P. & Nussenzweig, A. Specific association of mouse MDC1/NFBD1 with NBS1 at sites of DNA-damage. Cell Cycle4, 177–182 (2005). ArticleCAS Google Scholar
Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biol.7, 675–685 (2005). ArticleCAS Google Scholar
Thomann, D., Dorn, J., Sorger, P. K. & Danuser, G. Automatic fluorescent tag localization II: Improvement in super-resolution by relative tracking. J. Microsc.211, 230–248 (2003). ArticleCAS Google Scholar