A means to a DNA end: the many roles of Ku (original) (raw)
References
Mimori, T. et al. Characterization of a high molecular weight acidic nuclear protein recognised by antibodies in sera from patients with polymyositis-scleroderma overlap. J. Clin. Invest.68, 611–620 (1981). CASPubMedPubMed Central Google Scholar
Mimori, T., Hardin, J. A. & Steitz, J. A. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J. Biol. Chem.261, 2274–2278 (1986). CASPubMed Google Scholar
Francoeur, A. M., Peebles, C. L., Gompper, P. T. & Tan, E. M. Identification of KI [KU, P70/P80] autoantigens and analysis of anti-KI autoantibody reactivity. J. Immunol.136, 1648–1653 (1986). CASPubMed Google Scholar
Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell97, 621–633 (1999). This paper shows that Ku dynamically associates with sites of DNA damagein vivo. CASPubMed Google Scholar
Koike, M., Shiomi, T. & Koike, A. Dimerization and nuclear localization of Ku proteins. J. Biol. Chem.276, 11167–11173 (2001). CASPubMed Google Scholar
McAinsh, A. D., Scott-Drew, S., Murray, J. A. H. & Jackson, S. P. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr. Biol.9, 963–966 (1999). CASPubMed Google Scholar
Koike, M. Dimerization, translocation and localization of Ku70 and Ku80 proteins. J. Radiat. Res.43, 223–236 (2002). CASPubMed Google Scholar
Fewell, J. W. & Kuff, E. L. Intracellular redistribution of Ku immunoreactivity in response to cell–cell contact and growth modulating components in the medium. J. Cell Sci.109, 1937–1946 (1996). CASPubMed Google Scholar
Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochrondria. Nature Cell Biol.5, 320–329 (2003). CASPubMed Google Scholar
Morio, T. et al. Ku in the cytoplasm associates with CD40 in human B cells and translocates into the nucleus following incubation with IL-4 and anti-CD40 mAb. Immunity11, 339–348 (1999). CASPubMed Google Scholar
Gu, Y., Jin, S., Gao, Y., Weaver, D. & Alt, F. W. Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc. Natl Acad. Sci. USA94, 8076–8081 (1997). CASPubMedPubMed Central Google Scholar
Singleton, B. K. et al. Molecular and biochemical characterization of xrs mutants defective in Ku80. Mol. Cell. Biol.17, 1264–1273 (1997). CASPubMedPubMed Central Google Scholar
Errami, A. et al. Ku86 defines the genetic defect and restores X-ray resistance and V(D)J recombination to complementation group 5 hamster cell mutants. Mol. Cell. Biol.16, 1519–1526 (1996). CASPubMedPubMed Central Google Scholar
Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity7, 653–665 (1997). CASPubMed Google Scholar
Li, G. C. et al. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol. Cell2, 1–8 (1998). CASPubMed Google Scholar
Vogel, H., Lim, D. -S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA96, 10770–10775 (1999). CASPubMedPubMed Central Google Scholar
Mimori, T. & Hardin, J. A. Mechanism of interaction between Ku protein and DNA. J. Biol. Chem.261, 10375–10379 (1986). CASPubMed Google Scholar
Falzon, M., Fewell, J. W. & Kuff, E. L. EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J. Biol. Chem.268, 10546–10552 (1993). CASPubMed Google Scholar
Yaneva, M., Kowalewski, T. & Lieber, M. R. Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies. EMBO J.16, 5098–5112 (1997). CASPubMedPubMed Central Google Scholar
Paillard, S., & Strauss, F. Analysis of the mechanism of interaction of simian Ku protein with DNA. Nucl. Acids Res.19, 5619–5624 (1991). CASPubMedPubMed Central Google Scholar
Ono, M., Tucker, P. W. & Capra, J. D. Production and characterization of recombinant human Ku antigen. Nucl. Acids Res.22, 3918–3924 (1994). CASPubMedPubMed Central Google Scholar
Pang, D. L., Yoo, S., Dynan, W. S., Jung, M. & Dritschilo, A. Ku proteins join DNA fragments as shown by atomic force microscopy. Cancer Res.57, 1412–1415 (1997). CASPubMed Google Scholar
Blier, P. R., Griffith, A. J., Craft, J. & Hardin, J. A. Binding of Ku protein to DNA. J. Biol. Chem.268, 7594–7601 (1993). CASPubMed Google Scholar
deVries, E., Vandriel, W., Bergsma, W. G., Amberg, A. C. & Vandervliet, P. C. HeLa nuclear-protein recognizing DNA termini and translocating on DNA forming a regular DNA multimeric complex. J. Mol. Biol.208, 65–78 (1989). CAS Google Scholar
Chiu, C. -F., Lin, T. -Y. & Chou, W. -G. Direct transfer of Ku between DNA molecules with nonhomologous ends. Mutat. Res.486, 185–194 (2001). CASPubMed Google Scholar
Dynan, W. S. & Yoo, S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucl. Acids Res.26, 1551–1559 (1998). A comprehensive review of the biochemical properties of Ku and DNA-PKcs. CASPubMedPubMed Central Google Scholar
Gell, D. & Jackson, S. P. Mapping of protein–protein interactions within the DNA-dependent protein kinase complex. Nucl. Acids Res.27, 3494–3502 (1999). CASPubMedPubMed Central Google Scholar
Aravind, L. & Koonin, E. V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res.11, 1365–1374 (2001). This report, in addition to reference 46, identified the presence of Ku homologues in prokaryotes. CASPubMedPubMed Central Google Scholar
Aravind, L. & Koonin, E. V. SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci.25, 112–114 (2000). CASPubMed Google Scholar
Walker, J. R., Corpina, R. A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature412, 607–614 (2001). Report of the crystal structure of Ku alone and bound to DNA, which provided enormous insight into the biochemical properties of Ku including the mechanism of DNA binding. CASPubMed Google Scholar
Wang, J., Satoh, M., Chou, C. & Reeves, W. H. Similar DNA binding properties of free p70 (KU) subunit and p70/p80 heterodimer. FEBS Lets.351, 219–224 (1994). CAS Google Scholar
Griffith, A. J., Blier, P. R., Mimori, T. & Hardin, J. A. Ku polypeptides synthesized in vitro assemble into complexes which recognize ends of double-stranded DNA. J. Biol. Chem.267, 331–338 (1992). CASPubMed Google Scholar
Zhang, Z. et al. The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J. Biol. Chem.276, 38231–38236 (2001). CASPubMed Google Scholar
Harris, R. et al. The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). J. Mol. Biol.335, 573–582 (2004). CASPubMed Google Scholar
Giffen, W. et al. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature380, 265–268 (1996). Google Scholar
Schild-Poulter, C. et al. Differential DNA binding of Ku antigen determines its involvement in DNA replication. DNA Cell Biol.22, 65–78 (2003). CASPubMed Google Scholar
Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell72, 131–142 (1993). CASPubMed Google Scholar
Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA89, 11920–11924 (1992). References 37 and 38 show that Ku is a part of the DNA-dependent protein kinase in higher eukaryotes. CASPubMedPubMed Central Google Scholar
Suwa, A. et al. DNA-dependent protein kinase (Ku protein–p350 complex) assembles on double-stranded DNA. Proc. Natl Acad. Sci. USA91, 6904–6908 (1994). CASPubMedPubMed Central Google Scholar
Hammarsten, O. & Chu, G. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc. Natl Acad. Sci. USA95, 525–530 (1998). CASPubMedPubMed Central Google Scholar
Chan, D. W. & Lees-Miller, S. The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J. Biol. Chem.271, 8936–8941 (1996). CASPubMed Google Scholar
Myung, K., He, D. M., Lee, S. E. & Hendrickson, E. A. KARP-1: a novel leucine zipper protein expressed from the Ku86 autoantigen locus is implicated in the control of DNA-dependent protein kinase activity. EMBO J.18, 3172–3184 (1997). Google Scholar
Hanakahi, L. A. & West, S. C. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J.21, 2038–2044 (2002). CASPubMedPubMed Central Google Scholar
Ma, Y. & Lieber, M. R. Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J. Biol. Chem.277, 10756–10759 (2002). CASPubMed Google Scholar
Hanakahi, L. A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S. C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell102, 721–729 (2000). CASPubMed Google Scholar
Doherty, A. J., Jackson, S. P. & Weller, G. R. Identification of bacterial homologes of the Ku DNA-repair proteins. FEBS Lett.500, 186–188 (2001). CASPubMed Google Scholar
West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol.4, 1–11 (2003). Google Scholar
Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol.4, 712–720 (2003). A comprehensive review of NHEJ. CAS Google Scholar
Jeggo, P. A., Taccioli, G. E. & Jackson, S. P. Menage a trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays17, 949–957 (1995). CASPubMed Google Scholar
Ferguson, D. O. & Alt, F. W. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene20, 5572–5579 (2001). CASPubMed Google Scholar
Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev.13, 916–934 (1999). CASPubMed Google Scholar
Baumann, P. & West, S. C. DNA end-joining cayalyzed by human cell free extracts. Proc. Natl Acad. Sci. USA95, 14066–14070 (1998). CASPubMedPubMed Central Google Scholar
Labhart, P. Nonhomologous DNA end joining in cell-free systems. Eur. J. Biochem.265, 849–861 (1999). CASPubMed Google Scholar
Ramsden, D. A. & Gellert, M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J.17, 609–614 (1998). CASPubMedPubMed Central Google Scholar
McElhinny, S. A. N., Snowden, C. M., McCarville, J. & Ramsden, D. A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol.20, 2996–3003 (2000). Google Scholar
Chen, L., Trujillo, K., Sung, P. & Tomkinson, A. E. Interactions of the DNA ligase IV–XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem.275, 26196–26205 (2000). CASPubMed Google Scholar
Feldmann, H. & Winnacker, E. L. A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem.268, 12895–12900 (1993). CASPubMed Google Scholar
Siede, W., Friedl, A. A., Dianova, I., Eckardt-Schupp, F. & Friedberg, E. C. The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics142, 91–102 (1996). CASPubMedPubMed Central Google Scholar
Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J.15, 5093–5103 (1996). CASPubMedPubMed Central Google Scholar
Tsukamoto, Y., Kato, J. & Ikeda, H. Hdf1, a yeast Ku protein homologue, is involved in illegitimate recombination, but not in homologous recombination. Nucl. Acids Res.24, 2067–2072 (1996). CASPubMedPubMed Central Google Scholar
Milne, G. T., Jin, S., Shannon, K. B. & Weaver, D. T. Mutations in two Ku homologues define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 4189–4198 (1996). References 57–61 were instrumental in demonstrating Ku-dependent NHEJ inS. cerevisiae. CASPubMedPubMed Central Google Scholar
Barnes, G. & Rio, D. DNA double-strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA94, 867–872 (1997). CASPubMedPubMed Central Google Scholar
Chen, L., Trujillo, K., Ramos, W., Sung, P. & Tomkinson, A. E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell8, 1105–1115 (2001). CASPubMed Google Scholar
West, C. E. et al. Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J.31, 517–528 (2002). CASPubMed Google Scholar
Gallego, M. E., Bleuyard, J. -Y., Daoudal-Cotterell, S., Jallut, N. & White, C. I. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J.35, 557–565 (2003). CASPubMed Google Scholar
Kooistra, R., Pastink, A., Zonneveld, J. B. M., Lohman, P. H. M. & Eeken, J. C. J. The Drosophila melanogaster DmRAD54 gene plays a crucial role in double-strand break repair after P-element excision and acts synergistically with Ku70 in the repair of X-ray damage. Mol. Cell. Biol.19, 6269–6275 (1999). CASPubMedPubMed Central Google Scholar
Conway, C. et al. Ku is important for telomere maintenance, but not for differential expression of telomeric VSG genes, in African trypanosomes. J. Biol. Chem.277, 21269–21277 (2002). CASPubMed Google Scholar
Weller, G. R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science297, 1686–1689 (2002). Shows that the putative Ku homologues from prokaryotes are functional homologues and are likely to have a role in NHEJ in bacteria. CASPubMed Google Scholar
Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 399–409 (1998).
Liang, F. & Jasin, M. Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem.271, 14405–14411 (1996). CASPubMed Google Scholar
Hsu, H. -L., Yannone, S. M. & Chen, D. J. Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair1, 225–235 (2002). CASPubMed Google Scholar
Karmakar, P., Snowden, C. M., Ramsden, D. A. & Bohr, V. A. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucl. Acids Res.30, 3583–3591 (2002). CASPubMedPubMed Central Google Scholar
Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nature Genet.23, 194–198 (1999). CASPubMed Google Scholar
Galande, S. & Kohwi-Shigematsu, T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J. Biol. Chem.274, 20521–20528 (1999). CASPubMed Google Scholar
Van Dyck, E., Stasiak, A. Z., Stasiak, A. & West, S. C. Binding of double-strand breaks in DNA by human Rad52 protein. Nature398, 728–731 (1999). CASPubMed Google Scholar
Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev.15, 3237–3242 (2001). CASPubMedPubMed Central Google Scholar
Allen, C., Kurimasa, A., Brenneman, M. A., Chen, D. J. & Nickoloff, J. A. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc. Natl Acad. Sci. USA99, 3758–3763 (2002). CASPubMedPubMed Central Google Scholar
Ristic, D., Modesti, M., Kanaar, R. & Wyman, C. Rad52 and Ku bind to different DNA structures produced early in double-strand break repair. Nucl. Acids Res.31, 5229–5237 (2003). CASPubMedPubMed Central Google Scholar
Rodgers, W., Jordan, S. J. & Capra, J. D. Transient association of Ku with nuclear substrates characterized using fluorescence photobleaching. J. Immunol.168, 2348–2355 (2002). CASPubMed Google Scholar
Yavuzer, U., Smith, G. C. M., Bliss, T., Werner, D. & Jackson, S. P. DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D. Genes Dev.12, 2188–2199 (1998). CASPubMedPubMed Central Google Scholar
Wang, X., Li, G. C., Iliakis, G. & Wang, Y. Ku affects the CHK1-dependent G2 checkpoint after ionizing radiation. Cancer Res.62, 6031–6034 (2002). CASPubMed Google Scholar
Zhou, X. -Y. et al. Ku affects the ATM-dependent S phase checkpoint following ionizing radiation. Oncogene21, 6377–6381 (2002). CASPubMed Google Scholar
Manis, J. P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med.187, 2081–2089 (1998). CASPubMedPubMed Central Google Scholar
Taccioli, G. E. et al. Ku80: Product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science265, 1442–1445 (1994). CASPubMed Google Scholar
Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell109, S45–S55 (2002). CASPubMed Google Scholar
Zhu, C., Bogue, M. A., Lim, D., Hasty, P. & Roth, D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell86, 379–389 (1996). CASPubMed Google Scholar
Kulesza, P. & Lieber, M. R. DNA-PK is essential only for coding joint formation in V(D)J recombination. Nucl. Acids Res.26, 3944–3948 (1998). CASPubMedPubMed Central Google Scholar
Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature382, 551–555 (1996). CASPubMed Google Scholar
Barnes, D. E., Stamp, G., Rosewell, I., Denzel, A. & Lindahl, T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol.8, 1395–1398 (1998). CASPubMed Google Scholar
Han, J., Steen, S. B. & Roth, D. B. Ku86 is not required for protection of signal ends or for formation of nonstandard V(D)J recombination products. Mol. Cell. Biol.17, 2226–2234 (1997). CASPubMedPubMed Central Google Scholar
Purugganan, M. M., Shah, S., Kearney, J. F. & Roth, D. B. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucl. Acids Res.29, 1638–1646 (2001). CASPubMedPubMed Central Google Scholar
Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev.194, 77–95 (2003). CASPubMed Google Scholar
Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature404, 510–514 (2000). The first demonstration that Ku functions to prevent tumourigenesis in mammals. CASPubMedPubMed Central Google Scholar
Downs, J. A. & Jackson, S. P. Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol. Cell. Biol.19, 6260–6268 (1999). CASPubMedPubMed Central Google Scholar
Daniel, R., Katz, R. A. & Skalka, A. M. A role for DNA-PK in retroviral DNA integration. Science284, 644–647 (1999). CASPubMed Google Scholar
Li, L. et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J.20, 3272–3281 (2001). References 96, 97 and 98 show the involvement of Ku in retroelement integration, in which there is no DNA DSB created in the host genome. CASPubMedPubMed Central Google Scholar
d'Adda di Fagagna, F., Weller, G. R., Doherty, A. J. & Jackson, S. P. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep.4, 47–52 (2003). CASPubMed Google Scholar
Akroyd, J. & Symonds, N. Localization of the gam gene of bacteriophage Mu and characterisation of the gene product. Gene49, 273–282 (1986). CASPubMed Google Scholar
Abraham, Z. H. L. & Symonds, N. Purification of overexpressed gam gene protein from bacteriophage Mu by denaturation-renaturation techniques and a study of its DNA-binding properties. Biochem. J.269, 679–684 (1990). CASPubMedPubMed Central Google Scholar
Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways. Curr. Biol.12, 2076–2089 (2002). CASPubMed Google Scholar
Nugent, C. I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol.8, 657–660 (1998). CASPubMed Google Scholar
Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J.17, 1819–1828 (1998). CASPubMedPubMed Central Google Scholar
Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R. J. Yeast Ku as a regulator of chromosomal DNA end structure. Science280, 741–744 (1998). CASPubMed Google Scholar
Porter, S. E., Greenwell, P. W., Ritchie, K. B. & Petes, T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucl. Acids Res.24, 582–585 (1996). CASPubMedPubMed Central Google Scholar
Gravel, S. & Wellinger, R. J. Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku. Mol. Cell. Biol.22, 2182–2193 (2002). CASPubMedPubMed Central Google Scholar
Cosgrove, A. J., Nieduszynski, C. A. & Donaldson, A. D. Ku complex controls the replication time of DNA in telomere regions. Genes Dev.16, 2485–2490 (2002). CASPubMedPubMed Central Google Scholar
Bertuch, A. A. & Lundblad, V. The Ku heterodimer performs separable activities at double strand breaks and chromosome termini. Mol. Cell. Biol.23, 8202–8215 (2003). CASPubMedPubMed Central Google Scholar
Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R. & Gottschling, D. E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev.17, 2384–2395 (2003). CASPubMedPubMed Central Google Scholar
Roy, R., Meier, B., McAinsh, A. D., Feldmann, H. M. & Jackson, S. P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p–Sir4p interaction involved in telomeric silencing. J. Biol. Chem.279, 86–94 (2004). References 109, 110 and 111 report the identification of separation-of-function mutations in Ku80, which show separate roles for Ku in NHEJ and at telomeres. CASPubMed Google Scholar
Baumann, P. & Cech, T. R. Protection of telomeres by the Ku protein in fission yeast. Mol. Biol. Cell11, 3265–3275 (2000). CASPubMedPubMed Central Google Scholar
Riha, K., Watson, J. M., Parkey, J. & Shippen, D. E. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J.21, 2819–2826 (2002). CASPubMedPubMed Central Google Scholar
Bundock, P., van Attikum, H. & Hooykaas, P. Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucl. Acids Res.30, 3395–3400 (2002). CASPubMedPubMed Central Google Scholar
Miyoshi, T., Sadaie, M., Kanoh, J. & Ishikawa, F. Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J. Biol. Chem.278, 1924–1931 (2003). CASPubMed Google Scholar
Hsu, H., Gilley, D., Blackburn, E. H. & Chen, D. J. Ku is associated with the telomere in mammals. Proc. Natl Acad. Sci. USA96, 12454–12458 (1999). CASPubMedPubMed Central Google Scholar
d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol.11, 1192–1196 (2001). CASPubMed Google Scholar
Chai, W., Ford, L. P., Lenertz, L., Wright, W. E. & Shay, J. W. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J. Biol. Chem.277, 47242–47247 (2002). CASPubMed Google Scholar
Espejel, S. et al. Mammalian Ku86 mediates chromosome fusions and apoptosis caused by critically short telomeres. EMBO J.21, 2207–2219 (2002). CASPubMedPubMed Central Google Scholar
Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol.12, 1635–1644 (2002). CASPubMed Google Scholar
Mo, X. & Dynan, W. S. Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol. Cell. Biol.22, 8088–8099 (2002). CASPubMedPubMed Central Google Scholar
Woodard, R. L., Lee, K., Huang, J. & Dynan, W. S. Distinct roles for Ku protein in transcriptional reinitiation and DNA repair. J. Biol. Chem.276, 15423–15433 (2001). CASPubMed Google Scholar
Kuhn, A., Gottleib, T. M., Jackson, S. P. & Grummt, I. DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev.9, 193–203 (1995). CASPubMed Google Scholar
Manis, J., Tian, M. & Alt, F. W. Mechanism and control of class-switch recombination. Trends Immunol.23, 31–39 (2002). CASPubMed Google Scholar
Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem. Sci.28, 305–312 (2003). CASPubMed Google Scholar