- Taskinen, M. R. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 46, 733–749 (2003).
Article Google Scholar
- Marchesan, D. et al. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system. J. Biol. Chem. 278, 27293–27300 (2003).
Article CAS Google Scholar
- Bostrom, P. et al. Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler. Thromb. Vasc. Biol. 25, 1945–1951 (2005).
Article Google Scholar
- Andersson, L. et al. PLD1 and ERK2 regulate cytosolic lipid droplet formation. J. Cell Sci. 119, 2246–2257 (2006).
Article CAS Google Scholar
- Brown, D. A. Lipid droplets: Proteins floating on a pool of fat. Curr. Biol. 11, R446–R449 (2001).
Article CAS Google Scholar
- Londos, C., Sztalryd, C., Tansey, J.T. & Kimmel, A. R. Role of PAT proteins in lipid metabolism. Biochimie 87, 45–49 (2005).
Article CAS Google Scholar
- Martin, S. & Parton, R.G. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol. 7, 373–378 (2006).
Article CAS Google Scholar
- Brasaemle, D. L., Dolios, G., Shapiro, L., & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004).
Article CAS Google Scholar
- Liu, P. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792 (2004).
Article CAS Google Scholar
- Nakamura, N., Banno, Y. & Tamiya-Koizumi, K. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem. Biophys. Res. Commun. 335, 117–123 (2005).
Article CAS Google Scholar
- Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).
Article CAS Google Scholar
- Short, B. & Barr, F. A. Membrane fusion: caught in a trap. Curr. Biol. 14, R187–R189 (2004).
Article CAS Google Scholar
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 1744, 493–517 (2005).
PubMed Google Scholar
- Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nature Rev. Mol. Cell Biol. 7, 631–643 (2006).
Article CAS Google Scholar
- Kawanishi, M. et al. Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3-L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J. Biol. Chem. 275, 8240–8247 (2000).
Article CAS Google Scholar
- Huang, X. et al. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23. Pancreas 23, 125–133 (2001).
Article CAS Google Scholar
- High, S. & Abell, B. M. Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem. Soc. Trans. 32, 659–662 (2004).
Article CAS Google Scholar
- Bryant, N. J., Govers, R. & James, D. E. Regulated transport of the glucose transporter GLUT4. Nature Rev. Mol. Cell Biol. 3, 267–277 (2002).
Article CAS Google Scholar
- Ishiki, M. & Klip, A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146, 5071–5078 (2005).
Article CAS Google Scholar
- Foster, L. J., Yaworsky, K., Trimble, W. S., & Klip, A. SNAP23 promotes insulin-dependent glucose uptake in 3T3-L1 adipocytes: possible interaction with cytoskeleton. Am. J. Physiol. 276, C1108–C1114 (1999).
Article CAS Google Scholar
- Claycomb, W. C. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).
Article CAS Google Scholar
- Shuralyova, I. et al. Inhibition of glucose uptake in murine cardiomyocyte cell line HL-1 by cardioprotective drugs dilazep and dipyridamole. Am. J. Physiol. Heart Circ. Physiol. 286, H627–H632 (2004).
Article CAS Google Scholar
- Hay, J. C. et al. Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell Biol. 141, 1489–1502 (1998).
Article CAS Google Scholar
- Lanoix, J. et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol. 155, 1199–1212 (2001).
Article CAS Google Scholar
- Sollner, T. et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).
Article CAS Google Scholar
- Asp, L. et al. Role of ADP ribosylation factor 1 in the assembly and secretion of ApoB-100-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 25, 566–570 (2005).
Article CAS Google Scholar
- Piper, R. C., Hess, L. J., & James, D. E. Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am. J. Physiol. 260, C570–C580 (1991).
Article CAS Google Scholar
- Olefsky, J. M. Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes. Biochem. J. 172, 137–145 (1978).
Article CAS Google Scholar