Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling (original) (raw)
References
Dohlman, H. G. & Thorner, J. W. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem.70, 703–754 (2001). ArticleCAS Google Scholar
Inouye, C., Dhillon, N. & Thorner, J. Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling. Science278, 103–106 (1997). ArticleCAS Google Scholar
Garrenton, L. S., Young, S. L. & Thorner, J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev.20, 1946–1958 (2006). ArticleCAS Google Scholar
Winters, M. J., Lamson, R. E., Nakanishi, H., Neiman, A. M. & Pryciak, P. M. A membrane binding domain in the ste5 scaffold synergizes with gβγ binding to control localization and signaling in pheromone response. Mol. Cell20, 21–32 (2005). ArticleCAS Google Scholar
van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. MAP kinase dynamics in response to pheromones in budding yeast. Nature Cell Biol.3, 1051–1059 (2001). ArticleCAS Google Scholar
Cook, J. G., Bardwell, L., Kron, S. J. & Thorner, J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev.10, 2831–2848 (1996). ArticleCAS Google Scholar
Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nature Methods3, 83–89 (2006). ArticleCAS Google Scholar
Zhan, X. L., Deschenes, R. J. & Guan, K. L. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev.11, 1690–1702 (1997). ArticleCAS Google Scholar
Wang, Y. & Elion, E. A. Nuclear export and plasma membrane recruitment of the Ste5 scaffold are coordinated with oligomerization and association with signal transduction components. Mol. Biol. Cell14, 2543–2558 (2003). ArticleCAS Google Scholar
Madden, K. & Snyder, M. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol.52, 687–744 (1998). ArticleCAS Google Scholar
Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell Biol.18, 4053–4069 (1998). ArticleCAS Google Scholar
Remenyi, A., Good, M. C., Bhattacharyya, R. P. & Lim, W. A. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol. Cell20, 951–962 (2005). ArticleCAS Google Scholar
Deminoff, S. J., Howard, S. C., Hester, A., Warner, S. & Herman, P. K. Using substrate-binding variants of the cAMP-dependent protein kinase to identify novel targets and a kinase domain important for substrate interactions in Saccharomyces cerevisiae. Genetics173, 1909–1917 (2006). ArticleCAS Google Scholar
Bhattacharyya, R. P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science311, 822–826 (2006). ArticleCAS Google Scholar
Doi, K. et al. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J.13, 61–70 (1994). ArticleCAS Google Scholar
Zhan, X. L. & Guan, K. L. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Genes Dev.13, 2811–2827 (1999). ArticleCAS Google Scholar
Bastiaens, P., Caudron, M., Niethammer, P. & Karsenti, E. Gradients in the self-organization of the mitotic spindle. Trends Cell Biol.16, 125–134 (2006). ArticleCAS Google Scholar
Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol.7, 165–176 (2006). ArticleCAS Google Scholar
Wang, Z. X., Zhou, B., Wang, Q. M. & Zhang, Z. Y. A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity. Biochemistry41, 7849–7857 (2002). ArticleCAS Google Scholar
Zhao, Y. & Zhang, Z. Y. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. J. Biol. Chem.276, 32382–32391 (2001). ArticleCAS Google Scholar
Bastiaens, P. I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol.9, 48–52 (1999). ArticleCAS Google Scholar
Elion, E. A., Satterberg, B. & Kranz, J. E. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell4, 495–510 (1993). ArticleCAS Google Scholar
Lew, D. J. Yeast polarity: negative feedback shifts the focus. Curr. Biol.15, R994–R996 (2005). ArticleCAS Google Scholar
Li, E., Cismowski, M. J. & Stone, D. E. Phosphorylation of the pheromone-responsive Gβ protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function. Mol. Gen. Genet.258, 608–618 (1998). ArticleCAS Google Scholar
Matheos, D., Metodiev, M., Muller, E., Stone, D. & Rose, M. D. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J. Cell Biol.165, 99–109 (2004). ArticleCAS Google Scholar
Metodiev, M. V., Matheos, D., Rose, M. D. & Stone, D. E. Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science296, 1483–1486 (2002). ArticleCAS Google Scholar
Ozbudak, E. M., Becskei, A. & van Oudenaarden, A. A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev. Cell9, 565–571 (2005). ArticleCAS Google Scholar
Qi, M. & Elion, E. A. Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3. J. Cell Sci.118, 2837–2848 (2005). ArticleCAS Google Scholar
Hwang, E., Kusch, J., Barral, Y. & Huffaker, T. C. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol.161, 483–488 (2003). ArticleCAS Google Scholar
Yin, H., Pruyne, D., Huffaker, T. C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature406, 1013–1015 (2000). ArticleCAS Google Scholar
Limpert, E., Stahel, W. A. & Abbt, M. Log-normal distributions across the sciences: Keys and clues. Bioscience51, 341–352 (2001). Article Google Scholar