Cell-signalling dynamics in time and space (original) (raw)
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCASPubMed Google Scholar
Murphy, L. O., Smith, S., Chen, R. H., Fingar, D. C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nature Cell Biol.4, 556–564 (2002). ArticleCASPubMed Google Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). ArticleCASPubMed Google Scholar
Gray, S. G., Stenfeldt Mathiasen, I. & De Meyts, P. The insulin-like growth factors and insulin-signalling systems: an appealing target for breast cancer therapy? Horm. Metab. Res.35, 857–871 (2003) Presented the domain organization of multiple RTKs, including those implicated in human malignancies. ArticleCASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol.2, 127–137 (2001). ArticleCAS Google Scholar
Fischer, O. M., Hart, S., Gschwind, A. & Ullrich, A. EGFR signal transactivation in cancer cells. Biochem. Soc. Trans.31, 1203–1208 (2003). ArticleCASPubMed Google Scholar
De Meyts, P. & Whittaker, J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Rev. Drug Discov.1, 769–783 (2002). ArticleCAS Google Scholar
Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science300, 445–452 (2003). ArticleCASPubMed Google Scholar
Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science306, 1506–1507 (2004). ArticleCASPubMed Google Scholar
Kholodenko, B. N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem.267, 1583–1588 (2000). ArticleCASPubMed Google Scholar
Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science297, 1018–1023 (2002). ArticleCASPubMed Google Scholar
Xiong, W. & Ferrell, J. E. Jr. A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature426, 460–465 (2003). ArticleCASPubMed Google Scholar
Whitehurst, A., Cobb, M. H. & White, M. A. Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal-response pathways. Mol. Cell. Biol.24, 10145–10150 (2004). ArticleCASPubMedPubMed Central Google Scholar
Harding, A., Tian, T., Westbury, E., Frische, E. & Hancock, J. F. Subcellular localization determines MAP kinase signal output. Curr. Biol.15, 869–873 (2005). Elegant experimental demonstration that in mammalian cells, the MAPK cascade can operate as a switch with different sensitivity to the input signals from the plasma membrane or from the cytoplasm. Positive feedback loops that might encircle the MEK/ERK module in different cell types are not required for the switch-like behavior. ArticleCASPubMed Google Scholar
Bray, D. Protein molecules as computational elements in living cells. Nature376, 307–312 (1995). ArticleCASPubMed Google Scholar
Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15, 221–231 (2003). This thought-provoking and influential review provides memorable examples of elementary signalling modules that generate linear, hyperbolic and sigmoidal responses and complex dynamic behaviours. ArticleCASPubMed Google Scholar
Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol.6, 125–134 (2003). ArticleCASPubMed Google Scholar
Sauro, H. M. & Kholodenko, B. N. Quantitative analysis of signaling networks. Prog. Biophys. Mol. Biol.86, 5–43 (2004). ArticleCASPubMed Google Scholar
Brown, G. C. & Kholodenko, B. N. Spatial gradients of cellular phospho-proteins. FEBS Lett.457, 452–454 (1999). First theoretical analysis of protein-activity gradients that arise from the spatial separation of opposing enzymes in a protein-modification cycle. Together with references 23 and 83, criteria for the existence of these gradients within a cell and estimates of their characteristic sizes were formulated. ArticleCASPubMed Google Scholar
Lipkow, K., Andrews, S. S. & Bray, D. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol.187, 45–53 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kholodenko, B. N. MAP kinase cascade signaling and endocytic trafficking: a marriage of convenience? Trends Cell Biol.12, 173–177 (2002). Demonstrated that the propagation of phosphorylation signals solely by diffusion can be terminated by cytoplasmic phosphatases. Motor-driven trafficking of endosomes and scaffolds that carry phosphorylated kinases/signalling complexes can be required for the transfer of signals, especially across large cells. ArticleCASPubMed Google Scholar
Maly, I. V., Wiley, H. S. & Lauffenburger, D. A. Self-organization of polarized cell signaling via autocrine circuits: computational model analysis. Biophys. J.86, 10–22 (2004). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, A. R., Tischer, C., Verveer, P. J., Rocks, O. & Bastiaens, P. I. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nature Cell Biol.5, 447–453 (2003). Using single-cell live monitoring, the lateral propagation of EGFR activation was demonstrated and explained by a membrane wave of receptor phosphorylation that is triggered by bistability emerging in the EGFR activation/deactivation network. Bistability is thought to arise from inhibition of protein phosphatases by EGFR-mediated production of reactive oxygen species (reviewed in reference 27). ArticleCASPubMed Google Scholar
Kholodenko, B. N. Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors. J. Exp. Biol.206, 2073–2082 (2003). ArticleCASPubMed Google Scholar
Tischer, C. & Bastiens, P. I. Lateral phosphorylation propagation: an aspect of feedback signalling? Nature Rev. Mol. Cell Biol.4, 971–974 (2003). ArticleCAS Google Scholar
Perlson, E. et al. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron45, 715–726 (2005). First experimental demonstration that axonal transport of phosphorylated kinases over long distances might not necessarily involve endocytic vesicles. Instead, signalling complexes that contain phosphorylated ERK, vimentin and importin are driven by the molecular motor dynein along the axon in injured nerve. ArticleCASPubMed Google Scholar
Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science283, 381–387 (1999). Pioneering paper that presented simplified dynamic models for several signalling pathways and showed that they can exhibit collective dynamic behaviours that result in signal integration, modulation and amplification, bistability and hysteresis. ArticleCASPubMed Google Scholar
Kholodenko, B. N., Demin, O. V., Moehren, G. & Hoek, J. B. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem.274, 30169–30181 (1999). ArticleCASPubMed Google Scholar
Haugh, J. M., Wells, A. & Lauffenburger, D. A. Mathematical modeling of epidermal growth factor receptor signaling through the phospholipase C pathway: mechanistic insights and predictions for molecular interventions. Biotechnol. Bioeng.70, 225–238 (2000). ArticleCASPubMed Google Scholar
Brightman, F. A. & Fell, D. A. Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett.482, 169–174 (2000). ArticleCASPubMed Google Scholar
Asthagiri, A. R. & Lauffenburger, D. A. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol. Prog.17, 227–239 (2001). ArticleCASPubMed Google Scholar
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol.20, 370–375 (2002). Article Google Scholar
Heinrich, R., Neel, B. G. & Rapoport, T. A. Mathematical models of protein kinase signal transduction. Mol. Cell9, 957–970 (2002). ArticleCASPubMed Google Scholar
Woolf, P. J. & Linderman, J. J. Untangling ligand induced activation and desensitization of G-protein-coupled receptors. Biophys. J.84, 3–13 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hatakeyama, M. et al. A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem. J.373, 451–463 (2003). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, B., Faeder, J. R. & Hlavacek, W. S. Mathematical and computational models of immune-receptor signalling. Naure. Rev. Immunol.4, 445–456 (2004). An insightful account of intricacies that are involved in computational modelling of immune-receptor signalling, including the combinatorial complexity of states and processes in highly interconnected networks. ArticleCAS Google Scholar
Bornheimer, S. J., Maurya, M. R., Farquhar, M. G. & Subramaniam, S. Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction. Proc. Natl Acad. Sci. USA101, 15899–15904 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hornberg, J. J. et al. Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J.272, 244–258 (2005). ArticleCASPubMed Google Scholar
Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nature Cell Biol.7, 365–373 (2005). ArticleCASPubMed Google Scholar
Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol.13, 43–50 (2003). ArticleCASPubMed Google Scholar
Hendriks, B. S., Orr, G., Wells, A., Wiley, H. S. & Lauffenburger, D. A. Parsing ERK activation reveals quantitatively equivalent contributions from epidermal growth factor receptor and HER2 in human mammary epithelial cells. J. Biol. Chem.280, 6157–6169 (2005). ArticleCASPubMed Google Scholar
Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 25 May 2005 (10.1038/msb4100014).
Bray, D. Reductionism for biochemists: how to survive the protein jungle. Trends Biochem. Sci.22, 325–326 (1997). Short and revealing comment on reductionism in biology, which argues that only computational approaches might enable us to see 'the forest for the trees'. ArticleCASPubMed Google Scholar
Wolkenhauer, O., Sreenath, S. N., Wellstead, P., Ullah, M. & Cho, K. H. A systems- and signal-oriented approach to intracellular dynamics. Biochem. Soc. Trans.33, 507–515 (2005). ArticleCASPubMed Google Scholar
Suenaga, A. et al. Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J. Biol. Chem.279, 4657–4662 (2004). ArticleCASPubMed Google Scholar
Markevich, N. I. et al. Signal processing at the Ras circuit: what shapes Ras activation patterns? IEE Syst. Biol.1, 104–113 (2004). ArticleCAS Google Scholar
Shvartsman, S. Y., Muratov, C. B. & Lauffenburger, D. A. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development129, 2577–2589 (2002). CASPubMed Google Scholar
Resat, H., Ewald, J. A., Dixon, D. A. & Wiley, H. S. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys. J.85, 730–743 (2003). ArticleCASPubMedPubMed Central Google Scholar
Morton-Firth, C. J. & Bray, D. Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol.192, 117–128 (1998). ArticleCASPubMed Google Scholar
Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science308, 1472–1477 (2005). ArticleCASPubMed Google Scholar
Kim, J. E., Tannenbaum, S. R. & White, F. M. Global phosphoproteome of HT-29 human colon adenocarcinoma cells. J. Proteome Res.4, 1339–1346 (2005). ArticleCASPubMed Google Scholar
Borisov, N. M., Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys. J.89, 951–966 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics20, 3289–3291 (2004). ArticleCASPubMed Google Scholar
Faeder, J. R., Blinov, M. L., Goldstein, B. & Hlavacek, W. S. Rule-based modeling of biochemical networks. Complexity10, 22–41 (2005). Article Google Scholar
Lok, L. & Brent, R. Automatic generation of cellular reaction networks with Moleculizer 1.0. Nature Biotechnol.23, 131–136 (2005). ArticleCAS Google Scholar
Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B. N. & Gilles, E. D. A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics (10.1186/1471-2105-7-34).
Goldbeter, A. & Koshland, D. E. Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA78, 6840–6844 (1981). Almost 25 years after publication, still an instructive theoretical exploration of input–output responses of a universal signalling cycle; coined the term 'ultrasensitivity'. ArticleCASPubMedPubMed Central Google Scholar
Ortega, F., Acerenza, L., Westerhoff, H. V., Mas, F. & Cascante, M. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades. Proc. Natl Acad. Sci. USA99, 1170–1175 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferrell, J. E. Jr & Bhatt, R. R. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem.272, 19008–19016 (1997). ArticleCASPubMed Google Scholar
Kholodenko, B. N., Hoek, J. B., Brown, G. C. & Westerhoff, H. V. in BioThermoKinetics in the Post Genomic Era (eds Larsson, C., Pahlman, I. & Gustafsson, L.) 102–107 (Göteborg, 1998). Google Scholar
Salazar, C. & Hofer, T. Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J. Mol. Biol.327, 31–45 (2003). ArticleCASPubMed Google Scholar
Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell. Biol.164, 353–359 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kholodenko, B. N., Hoek, J. B., Westerhoff, H. V. & Brown, G. C. Quantification of information transfer via cellular signal transduction pathways. FEBS Lett.414, 430–434 (1997). ArticleCASPubMed Google Scholar
Ferrell, J. E. Jr. How responses get more switch-like as you move down a protein kinase cascade. Trends Biochem. Sci.22, 288–289 (1997). ArticleCASPubMed Google Scholar
Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA100, 975–980 (2003). Together with reference 69, provided the first experimental demonstration that hysteresis and bistability in CDC2 activation drives the cell-cycle oscillator. ArticleCASPubMed Google Scholar
Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol.5, 346–351 (2003). ArticleCASPubMed Google Scholar
Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. 3rd & Doyle, J. Robustness of cellular functions. Cell118, 675–685 (2004). ArticleCASPubMed Google Scholar
Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA99, 5988–5992 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferrell, J. E. Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol.14, 140–148 (2002). ArticleCASPubMed Google Scholar
Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA97, 5818–5823 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kolch, W., Calder, M. & Gilbert, D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett.579, 1891–1895 (2005). Surveys the complexity of a multitude of feedback circuits and other regulations in the MAPK/ERK cascade, and argues that their understanding requires mathematical modelling approaches. ArticleCASPubMed Google Scholar
Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci.106, 1153–1168 (1993). CASPubMed Google Scholar
Bray, D. Signaling complexes: biophysical constraints on intracellular communication. Annu. Rev. Biophys. Biomol. Struct.27, 59–75 (1998). A profound survey of the effects of the spatial organization and biophysical constraints imposed by macromolecular crowding, diffusion and membrane compartments on the control and evolution of cell communication. ArticleCASPubMed Google Scholar
Kholodenko, B. N., Hoek, J. B. & Westerhoff, H. V. Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol.10, 173–178 (2000). ArticleCASPubMed Google Scholar
Haugh, J. M. & Lauffenburger, D. A. Physical modulation of intracellular signaling processes by locational regulation. Biophys. J.72, 2014–2031 (1997). ArticleCASPubMedPubMed Central Google Scholar
Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol.1, 31–39 (2000). ArticleCAS Google Scholar
Bauman, A. L. & Scott, J. D. Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nature Cell Biol.4, E203–206 (2002). ArticleCASPubMed Google Scholar
Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nature Rev. Mol. Cell Biol.3, 600–614 (2002). ArticleCAS Google Scholar
Bivona, T. G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature424, 694–698 (2003). ArticleCASPubMed Google Scholar
Kholodenko, B. N., Brown, G. C. & Hoek, J. B. Diffusion control of protein phosphorylation in signal transduction pathways. Biochem. J.350, 901–907 (2000). ArticleCASPubMedPubMed Central Google Scholar
Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of stathmin/Op18. Nature389, 640–643 (1997). ArticleCASPubMed Google Scholar
Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature400, 178–181 (1999). ArticleCASPubMed Google Scholar
Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science295, 2452–2456 (2002). Together with references 87 and 91, reported the first experimental observations of gradients of signalling proteins that control and maintain the assembly of the mitotic spindle around chromosomes. ArticleCASPubMed Google Scholar
Niethammer, P., Bastiaens, P. & Karsenti, E. Stathmin–tubulin interaction gradients in motile and mitotic cells. Science303, 1862–1866 (2004). First experimental demonstration of spatial gradients of a phosphorylated protein (the microtubule-binding protein stathmin) within living cells. ArticleCASPubMed Google Scholar
Sprague, B. L. et al. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J.84, 3529–3246 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gorlich, D., Seewald, M. J. & Ribbeck, K. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J.22, 1088–1100 (2003). ArticlePubMedPubMed Central Google Scholar
Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr. Biol.15, 828–832 (2005). ArticleCASPubMed Google Scholar
Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science309, 1373–1376 (2005). ArticleCASPubMed Google Scholar
Rao, C. V., Kirby, J. R. & Arkin, A. P. Phosphatase localization in bacterial chemotaxis: divergent mechanism, convergent principles. Phys. Biol.2, 148–158 (2005). ArticleCASPubMed Google Scholar
Fell, D. A. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells. J. Theor. Biol.84, 361–385 (1980). ArticleCASPubMed Google Scholar
Li, H. Y. & Zheng, Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev.18, 512–527 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol.16, 400–406 (2004). Provides insight into how different types of endosomes, multiple membrane microdomains and their protein complement control signal specificity in time and space. ArticleCASPubMed Google Scholar
Howe, C. L. & Mobley, W. C. Signaling endosome hypothesis: A cellular mechanism for long distance communication. J. Neurobiol.58, 207–216 (2004). ArticlePubMed Google Scholar
Sorkin, A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr. Opin. Cell Biol.16, 392–399 (2004). ArticleCASPubMed Google Scholar
Ginty, D. D. & Segal, R. A. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol.12, 268–274 (2002). ArticleCASPubMed Google Scholar
Campenot, R. B. & MacInnis, B. L. Retrograde transport of neurotrophins: fact and function. J. Neurobiol.58, 217–229 (2004). ArticleCASPubMed Google Scholar
MacInnis, B. L., Senger, D. L. & Campenot, R. B. Spatial requirements for TrkA kinase activity in the support of neuronal survival and axon growth in rat sympathetic neurons. Neuropharmacology45, 995–1010 (2003). ArticleCASPubMed Google Scholar
Hill, D. B., Plaza, M. J., Bonin, K. & Holzwarth, G. Fast vesicle transport in PC12 neurites: velocities and forces. Eur. Biophys. J.33, 623–632 (2004). ArticleCASPubMed Google Scholar
Grimm, V. et al. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science310, 987–991 (2005). ArticleCASPubMed Google Scholar
Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol.2, 908–916 (2001). ArticleCAS Google Scholar
Moehren, G. et al. Temperature dependence of the epidermal growth factor receptor signaling network can be accounted for by a kinetic model. Biochemistry41, 306–320 (2002). ArticleCASPubMed Google Scholar
Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J.13, 4269–4277 (1994). ArticleCASPubMedPubMed Central Google Scholar
Machide, M., Kamitori, K. & Kohsaka, S. Hepatocyte growth factor-induced differential activation of phospholipase cgamma 1 and phosphatidylinositol 3-kinase is regulated by tyrosine phosphatase SHP-1 in astrocytes. J. Biol. Chem.275, 31392–31398 (2000). ArticleCASPubMed Google Scholar
Goryanin, I., Hodgman, T. C. & Selkov, E. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics15, 749–758 (1999). ArticleCASPubMed Google Scholar
Sauro, H. M. et al. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. Omics7, 355–372 (2003). ArticleCASPubMed Google Scholar
Slepchenko, B. M., Schaff, J. C., Macara, I. & Loew, L. M. Quantitative cell biology with the Virtual Cell. Trends Cell. Biol.13, 570–576 (2003). ArticleCASPubMed Google Scholar
Sivakumaran, S., Hariharaputran, S., Mishra, J. & Bhalla, U. S. The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics19, 408–415 (2003). ArticleCASPubMed Google Scholar
Campagne, F. et al. Quantitative information management for the biochemical computation of cellular networks. Sci. STKE2004, pl11 (2004). PubMed Google Scholar
Olivier, B. G. & Snoep, J. L. Web-based kinetic modelling using JWS Online. Bioinformatics20, 2143–2144 (2004). ArticleCASPubMed Google Scholar