Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes. Science299, 1540 (2003). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCAS Google Scholar
Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.64, 3087–3095 (2004). ArticleCAS Google Scholar
He, L. et al. A microRNA polycistron as a potential human oncogene. Nature435, 828–833 (2005). ArticleCAS Google Scholar
Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.65, 9628–9632 (2005). ArticleCAS Google Scholar
Landais, S., Landry, S., Legault, P. & Rassart, E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res.67, 5699–5707 (2007). ArticleCAS Google Scholar
Petrocca, F. et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell13, 272–286 (2008). ArticleCAS Google Scholar
Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell132, 860–874 (2008). ArticleCAS Google Scholar
Sylvestre, Y. et al. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem.282, 2135–2143 (2007). ArticleCAS Google Scholar
Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell133, 217–222 (2008). ArticleCAS Google Scholar
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839–843 (2005). ArticleCAS Google Scholar
Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet.38, 1060–1065 (2006). ArticleCAS Google Scholar
Zhang, L. et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103, 9136–9141 (2006). ArticleCAS Google Scholar
Ivanovska, I. et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol. Cell Biol.28, 2167–2174 (2008). ArticleCAS Google Scholar
Lu, Y., Thomson, J. M., Wong, H. Y., Hammond, S. M. & Hogan, B. L. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev. Biol.310, 442–453 (2007). ArticleCAS Google Scholar
Matsubara, H. et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene26, 6099–6105 (2007). ArticleCAS Google Scholar
Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell132, 875–886 (2008). ArticleCAS Google Scholar
Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol.9, 405–414 (2008). ArticleCAS Google Scholar
Fontana, L. et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nature Cell Biol.9, 775–787 (2007). ArticleCAS Google Scholar
Ye, W. et al. The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS ONE3, e1719 (2008). Article Google Scholar
Wang, C. H. et al. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE 3, e2420 (2008). Article Google Scholar
Hossain, A., Kuo, M. T. & Saunders, G. F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell Biol.26, 8191–8201 (2006). ArticleCAS Google Scholar
Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl Acad. Sci. USA105, 2889–2894 (2008). ArticleCAS Google Scholar
Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. (2008).
Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol.10, 987–993 (2008). ArticleCAS Google Scholar
Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biol.8, 278–284 (2006). ArticleCAS Google Scholar
Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature451, 1125–1129 (2008). ArticleCAS Google Scholar
Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature424, 334–337 (2003). ArticleCAS Google Scholar
Rifes, P. et al. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development134, 3155–3165 (2007). ArticleCAS Google Scholar
Karaulanov, E. E., Bottcher, R. T. & Niehrs, C. A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep.7, 283–290 (2006). ArticleCAS Google Scholar
Georges-Labouesse, E. N., George, E. L., Rayburn, H. & Hynes, R. O. Mesodermal development in mouse embryos mutant for fibronectin. Dev. Dyn.207, 145–156 (1996). ArticleCAS Google Scholar
Lee, D. Y., Deng, Z., Wang, C. H. & Yang, B. B. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl Acad. Sci. USA104, 20350–20355 (2007). ArticleCAS Google Scholar
Lee, D. Y. et al. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions. PLoS ONE 4, e4527 (2009). Article Google Scholar
Sheng, W. et al. The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol. Biol. Cell16, 1330–1340 (2005). ArticleCAS Google Scholar
Sheng, W. et al. Versican mediates mesenchymal-epithelial transition. Mol. Biol. Cell17, 2009–2020 (2006). ArticleCAS Google Scholar
Yee, A. J. et al. The effect of versican G3 domain on local breast cancer invasiveness and bony metastasis. Breast Cancer Res.9, R47 (2007). Article Google Scholar
LaPierre, D. P. et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res.67, 4742–4750 (2007). ArticleCAS Google Scholar
Hua, Z. et al. MiRNA-Directed Regulation of VEGF and Other Angiogenic Factors under Hypoxia. PLoS ONE 1, e116 (2006). Article Google Scholar