Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster (original) (raw)

References

  1. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G.I. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).
    Article CAS Google Scholar
  2. Brandvold, K.A., Neiman, P. & Ruddell, A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene 19, 2780–2785 (2000).
    Article CAS Google Scholar
  3. Ngo, C. et al. An in vivo function for the transforming myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ. 11, 201–210 (2000).
    CAS PubMed PubMed Central Google Scholar
  4. Baudino, T.A. et al. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 16, 2530–2543 (2002).
    Article CAS Google Scholar
  5. Ruddell, A., Mezquita, P., Brandvold, K.A., Farr, A. & Iritani, B.M. B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am. J. Pathol. 163, 2233–2245 (2003).
    Article CAS Google Scholar
  6. Knies-Bamforth, U.E., Fox, S.B., Poulsom, R., Evan, G.I. & Harris, A.L. c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res. 64, 6563–6570 (2004).
    Article CAS Google Scholar
  7. Tikhonenko, A.T., Black, D.J. & Linial, M.L. Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J. Biol. Chem. 271, 30741–30747 (1996).
    Article CAS Google Scholar
  8. Janz, A., Sevignani, C., Kenyon, K., Ngo, C. & Thomas-Tikhonenko, A. Activation of the Myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 28, 2268–2275 (2000).
    Article CAS Google Scholar
  9. Watnick, R.S., Cheng, Y.N., Rangarajan, A., Ince, T.A. & Weinberg, R.A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).
    Article CAS Google Scholar
  10. Sevignani, C. et al. Tumorigenic conversion of p53-deficient colon epithelial cells by an activated Ki-Ras gene. J. Clin. Invest. 101, 1572–1580 (1998).
    Article CAS Google Scholar
  11. Thomas-Tikhonenko, A. et al. Myc-transformed epithelial cells down-regulate clusterin which inhibits their growth in vitro and carcinogenesis in vivo. Cancer Res. 64, 3126–3136 (2004).
    Article CAS Google Scholar
  12. Tucker, R.P. The thrombospondin type 1 repeat superfamily. Int. J. Biochem. Cell Biol. 36, 969–974 (2004).
    Article CAS Google Scholar
  13. Inoki, I. et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 16, 219–221 (2002).
    Article CAS Google Scholar
  14. Perbal, B. CCN proteins: multifunctional signalling regulators. Lancet 363, 62–64 (2004).
    Article CAS Google Scholar
  15. Hwang, H.W. & Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 94, 776–780 (2006).
    Article CAS Google Scholar
  16. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).
    Article CAS Google Scholar
  17. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).
    Article CAS Google Scholar
  18. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004).
    Article Google Scholar
  19. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).
    Article CAS Google Scholar
  20. Kerbel, R.S. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).
    Article CAS Google Scholar
  21. Rak, J., Yu, J.L., Kerbel, R.S. & Coomber, B.L. What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res. 62, 1931–1934 (2002).
    CAS PubMed Google Scholar
  22. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).
    Article CAS Google Scholar
  23. Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha. Genes Dev. 14, 34–44 (2000).
    CAS PubMed PubMed Central Google Scholar
  24. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).
    Article CAS Google Scholar
  25. Himelstein, B.P., Lee, E.J., Sato, H., Seiki, M. & Muschel, R.J. Transcriptional activation of the matrix metalloproteinase-9 gene in an H-ras and v-myc transformed rat embryo cell line. Oncogene 14, 1995–1998 (1997).
    Article CAS Google Scholar
  26. Esquela-Kerscher, A. & Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).
    Article CAS Google Scholar
  27. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103, 2257–2261 (2006).
    Article CAS Google Scholar
  28. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).
    Article CAS Google Scholar
  29. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).
    Article Google Scholar
  30. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).
    Article CAS Google Scholar

Download references