Cell fate decisions are specified by the dynamic ERK interactome (original) (raw)
References
Shaul, Y. D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta1773, 1213–1226 (2007). ArticleCAS Google Scholar
Galabova-Kovacs, G. et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle5, 1514–1518 (2006). ArticleCAS Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCAS Google Scholar
Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors24, 21–44 (2006). ArticleCAS Google Scholar
Leicht, D. T. et al. Raf kinases: function, regulation and role in human cancer. Biochim. Biophys. Acta1773, 1196–1212 (2007). ArticleCAS Google Scholar
Clark-Lewis, I., Sanghera, J. S. & Pelech, S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J. Biol. Chem.266, 15180–15184 (1991). ArticleCAS Google Scholar
Akella, R., Moon, T. M. & Goldsmith, E. J. Unique MAP Kinase binding sites. Biochim. Biophys. Acta1784, 48–55 (2008). ArticleCAS Google Scholar
Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nature Cell Biol.7, 365–373 (2005). ArticleCAS Google Scholar
Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biol.9, 324–330 (2007). ArticleCAS Google Scholar
Niihori, T. et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genet.38, 294–296 (2006). ArticleCAS Google Scholar
Harrisingh, M. C. & Lloyd, A. C. Ras/Raf/ERK signalling and NF1. Cell Cycle3, 1255–1258 (2004). ArticleCAS Google Scholar
Ahmadian, M. R., Hoffmann, U., Goody, R. S. & Wittinghofer, A. Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry36, 4535–4541 (1997). ArticleCAS Google Scholar
York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature392, 622–626 (1998). ArticleCAS Google Scholar
Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell1, 239–250 (2001). ArticleCAS Google Scholar
Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J.288 (Pt 2), 351–355 (1992). ArticleCAS Google Scholar
Krueger, J., Chou, F. L., Glading, A., Schaefer, E. & Ginsberg, M. H. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation. Mol. Biol. Cell16, 3552–3561 (2005). ArticleCAS Google Scholar
Trencia, A. et al. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell Biol.23, 4511–4521 (2003). ArticleCAS Google Scholar
Araujo, H., Danziger, N., Cordier, J., Glowinski, J. & Chneiweiss, H. Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem.268, 5911–5920 (1993). ArticleCAS Google Scholar
Le Gallic, L., Virgilio, L., Cohen, P., Biteau, B. & Mavrothalassitis, G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol. Cell Biol.24, 1206–1218 (2004). ArticleCAS Google Scholar
Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science306, 1370–1373 (2004). ArticleCAS Google Scholar
Volmat, V., Camps, M., Arkinstall, S., Pouyssegur, J. & Lenormand, P. The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J. Cell Sci.114, 3433–3443 (2001). ArticleCAS Google Scholar
Malik, T. H. et al. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J.20, 1715–1725 (2001). ArticleCAS Google Scholar
Cantor, A. B. GATA transcription factors in hematologic disease. Int. J. Hematol.81, 378–384 (2005). ArticleCAS Google Scholar
Brewer, A. & Pizzey, J. GATA factors in vertebrate heart development and disease. Expert Rev. Mol. Med.8, 1–20 (2006). Article Google Scholar
Kaiser, F. J. et al. Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. Eur. J. Hum. Genet.12, 121–126 (2004). ArticleCAS Google Scholar
Kobayashi, H. et al. Missense mutation of TRPS1 in a family of tricho-rhino-phalangeal syndrome type III. Am. J. Med. Genet.107, 26–29 (2002). Article Google Scholar
Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science311, 1287–1290 (2006). ArticleCAS Google Scholar
Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol.7, 165–176 (2006). ArticleCAS Google Scholar
George, A. J., Stark, J. & Chan, C. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol.26, 653–659 (2005). ArticleCAS Google Scholar
Trinkle-Mulcahy, L. et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol.183, 223–239 (2008). ArticleCAS Google Scholar
de Rooij, J. & Bos, J. L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene14, 623–625 (1997). ArticleCAS Google Scholar
Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res.31, 3635–3641 (2003). ArticleCAS Google Scholar