Cell fate decisions are specified by the dynamic ERK interactome (original) (raw)

References

  1. Shaul, Y. D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226 (2007).
    Article CAS Google Scholar
  2. Galabova-Kovacs, G. et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 5, 1514–1518 (2006).
    Article CAS Google Scholar
  3. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).
    Article CAS Google Scholar
  4. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).
    Article CAS Google Scholar
  5. Leicht, D. T. et al. Raf kinases: function, regulation and role in human cancer. Biochim. Biophys. Acta 1773, 1196–1212 (2007).
    Article CAS Google Scholar
  6. Clark-Lewis, I., Sanghera, J. S. & Pelech, S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J. Biol. Chem. 266, 15180–15184 (1991).
    Article CAS Google Scholar
  7. Akella, R., Moon, T. M. & Goldsmith, E. J. Unique MAP Kinase binding sites. Biochim. Biophys. Acta 1784, 48–55 (2008).
    Article CAS Google Scholar
  8. Sasagawa, S., Ozaki, Y., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nature Cell Biol. 7, 365–373 (2005).
    Article CAS Google Scholar
  9. Santos, S. D., Verveer, P. J. & Bastiaens, P. I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biol. 9, 324–330 (2007).
    Article CAS Google Scholar
  10. Niihori, T. et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genet. 38, 294–296 (2006).
    Article CAS Google Scholar
  11. Harrisingh, M. C. & Lloyd, A. C. Ras/Raf/ERK signalling and NF1. Cell Cycle 3, 1255–1258 (2004).
    Article CAS Google Scholar
  12. Ahmadian, M. R., Hoffmann, U., Goody, R. S. & Wittinghofer, A. Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry 36, 4535–4541 (1997).
    Article CAS Google Scholar
  13. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).
    Article CAS Google Scholar
  14. Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239–250 (2001).
    Article CAS Google Scholar
  15. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288 (Pt 2), 351–355 (1992).
    Article CAS Google Scholar
  16. Krueger, J., Chou, F. L., Glading, A., Schaefer, E. & Ginsberg, M. H. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation. Mol. Biol. Cell 16, 3552–3561 (2005).
    Article CAS Google Scholar
  17. Trencia, A. et al. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell Biol. 23, 4511–4521 (2003).
    Article CAS Google Scholar
  18. Araujo, H., Danziger, N., Cordier, J., Glowinski, J. & Chneiweiss, H. Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem. 268, 5911–5920 (1993).
    Article CAS Google Scholar
  19. Le Gallic, L., Virgilio, L., Cohen, P., Biteau, B. & Mavrothalassitis, G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol. Cell Biol. 24, 1206–1218 (2004).
    Article CAS Google Scholar
  20. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).
    Article CAS Google Scholar
  21. Volmat, V., Camps, M., Arkinstall, S., Pouyssegur, J. & Lenormand, P. The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J. Cell Sci. 114, 3433–3443 (2001).
    Article CAS Google Scholar
  22. Malik, T. H. et al. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J. 20, 1715–1725 (2001).
    Article CAS Google Scholar
  23. Cantor, A. B. GATA transcription factors in hematologic disease. Int. J. Hematol. 81, 378–384 (2005).
    Article CAS Google Scholar
  24. Brewer, A. & Pizzey, J. GATA factors in vertebrate heart development and disease. Expert Rev. Mol. Med. 8, 1–20 (2006).
    Article Google Scholar
  25. Kaiser, F. J. et al. Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. Eur. J. Hum. Genet. 12, 121–126 (2004).
    Article CAS Google Scholar
  26. Kobayashi, H. et al. Missense mutation of TRPS1 in a family of tricho-rhino-phalangeal syndrome type III. Am. J. Med. Genet. 107, 26–29 (2002).
    Article Google Scholar
  27. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311, 1287–1290 (2006).
    Article CAS Google Scholar
  28. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).
    Article CAS Google Scholar
  29. George, A. J., Stark, J. & Chan, C. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol. 26, 653–659 (2005).
    Article CAS Google Scholar
  30. Trinkle-Mulcahy, L. et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183, 223–239 (2008).
    Article CAS Google Scholar
  31. de Rooij, J. & Bos, J. L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14, 623–625 (1997).
    Article CAS Google Scholar
  32. Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003).
    Article CAS Google Scholar

Download references