Cdk2 suppresses cellular senescence induced by the c-myc oncogene (original) (raw)
Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol.8, 729–740 (2007). ArticleCAS Google Scholar
Schmitt, C. A. Cellular senescence and cancer treatment. Biochim. Biophys. Acta (2006).
Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Front. Biosci.3, D250–D268 (1998). ArticleCAS Google Scholar
Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet.35, 25–31 (2003). ArticleCAS Google Scholar
Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol.13, 1775–1785 (2003). ArticleCAS Google Scholar
Parrinello, S. et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biol.5, 741–747 (2003). ArticleCAS Google Scholar
Grandori, C. et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev.17, 1569–1574 (2003). ArticleCAS Google Scholar
Robinson, K., Asawachaicharn, N., Galloway, D. A. & Grandori, C. c-Myc accelerates S-Phase and requires WRN to avoid replication stress. PLoS One4, e5951 (2009). Article Google Scholar
Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature448, 811–815 (2007). ArticleCAS Google Scholar
Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell7, 591–598 (2005). ArticleCAS Google Scholar
Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S. phase transition. Nature Cell Biol.7, 831–836 (2005). ArticleCAS Google Scholar
Satyanarayana, A., Hilton, M. B. & Kaldis, P. p21 inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S. phase DNA damage checkpoint. Mol. Biol. Cell (2007).
Deb-Basu, D., Karlsson, A., Li, Q., Dang, C. V. & Felsher, D. W. MYC can enforce cell cycle transit from G1 to S and G2 to S, but not mitotic cellular division, independent of p27-mediated inihibition of cyclin E/CDK2. Cell Cycle5, 1348–1355 (2006). ArticleCAS Google Scholar
Felsher, D. W., Zetterberg, A., Zhu, J., Tlsty, T. & Bishop, J. M. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc. Natl Acad. Sci. USA97, 10544–10548 (2000). ArticleCAS Google Scholar
Deb-Basu, D., Aleem, E., Kaldis, P. & Felsher, D. W. CDK2 is required by MYC to induce apoptosis. Cell Cycle5, 1342–1347 (2006). ArticleCAS Google Scholar
Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109, 321–334 (2002). ArticleCAS Google Scholar
Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell9, 1031–1044 (2002). ArticleCAS Google Scholar
Pusapati, R. V. et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc. Natl Acad. Sci. USA103, 1446–1451 (2006). ArticleCAS Google Scholar
Shreeram, S. et al. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med.203, 2793–2799 (2006). ArticleCAS Google Scholar
Gorrini, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature448, 1063–1067 (2007). ArticleCAS Google Scholar
Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood (2007).
Maclean, K. H., Kastan, M. B. & Cleveland, J. L. Atm deficiency affects both apoptosis and proliferation to augment Myc-induced lymphomagenesis. Mol. Cancer Res.5, 705–711 (2007). ArticleCAS Google Scholar
Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature448, 445–451 (2007). ArticleCAS Google Scholar
Louis, S. F. et al. c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc. Natl Acad. Sci. USA102, 9613–9618 (2005). ArticleCAS Google Scholar
Gao, P. et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell12, 230–238 (2007). ArticleCAS Google Scholar
Deans, A. J. et al. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res.66, 8219–8226 (2006). ArticleCAS Google Scholar
Woo, R. A. & Poon, R. Y. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev.18, 1317–1330 (2004). ArticleCAS Google Scholar
Ray, S. et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res.66, 6598–6605 (2006). ArticleCAS Google Scholar
Nilsson, J. A. et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell7, 433–444 (2005). ArticleCAS Google Scholar
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature413, 83–86 (2001). ArticleCAS Google Scholar
Martins, C. P. & Berns, A. Loss of p27(Kip1) but not p21(Cip1) decreases survival and synergizes with MYC in murine lymphomagenesis. EMBO J.21, 3739–3748 (2002). ArticleCAS Google Scholar
Macias, E., Kim, Y., Miliani de Marval, P. L., Klein-Szanto, A. & Rodriguez-Puebla, M. L. Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis. Cancer Res.67, 9713–9720 (2007). ArticleCAS Google Scholar
Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell11, 461–469 (2007). ArticleCAS Google Scholar
Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep.8, 497–503 (2007). ArticleCAS Google Scholar
Tetsu, O. & McCormick, F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell3, 233–245 (2003). ArticleCAS Google Scholar
Sugimoto, K. et al. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood79, 2378–2383 (1992). CASPubMed Google Scholar
Chi, Y. et al. Identification of CDK2 substrates in human cell lysates. Genome Biol.9, R149 (2008). Article Google Scholar
Matsuura, I. et al. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature430, 226–231 (2004). ArticleCAS Google Scholar
Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated Retinoblastoma-family proteins. EMBO J.16, 5322–5333 (1997). ArticleCAS Google Scholar
Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D. & Amati, B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. EMBO J.15, 6595–6604 (1996). ArticleCAS Google Scholar
Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell109, 335–346 (2002). ArticleCAS Google Scholar
Wu, C. H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA (2007).
Goga, A., Yang, D., Tward, A. D., Morgan, D. O. & Bishop, J. M. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Med.13, 820–827 (2007). ArticleCAS Google Scholar
Morgenstern, J. P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res.18, 3587–3596 (1990). ArticleCAS Google Scholar
Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res.23, 1686–1690 (1995). ArticleCAS Google Scholar
Hemann, M. T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature436, 807–811 (2005). ArticleCAS Google Scholar
Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature359, 554–556 (1992). ArticleCAS Google Scholar
Bahram, F., Wu, S., Oberg, F., Luscher, B. & Larsson, L. G. Posttranslational regulation of Myc function in response to phorbol ester/interferon-γ-induced differentiation of v-Myc-transformed U-937 monoblasts. Blood93, 3900–3912 (1999). CASPubMed Google Scholar
Brooks, E. E. et al. CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation. J. Biol. Chem.272, 29207–29211 (1997). ArticleCAS Google Scholar
Murga, M. et al. Global chromatin compaction limits the strength of the DNA damage response. J. Cell Biol.178, 1101–1108 (2007). ArticleCAS Google Scholar
Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature318, 533–538 (1985). ArticleCAS Google Scholar
Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell1, 289–298 (2002). ArticleCAS Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). ArticleCAS Google Scholar