Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex (original) (raw)
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA103, 11821–11827 (2006). ArticleCAS Google Scholar
Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol.10, 513–525 (2009). ArticleCAS Google Scholar
D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol.7, 347–358 (2006). ArticleCAS Google Scholar
Carroll, K. S. et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science292, 1373–1376 (2001). ArticleCAS Google Scholar
Semerdjieva, S. et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol.183, 499–511 (2008). ArticleCAS Google Scholar
Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA94, 1828–1833 (1997). ArticleCAS Google Scholar
Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol.156, 653–664 (2002). ArticleCAS Google Scholar
Girod, A. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat. Cell Biol.1, 423–430 (1999). ArticleCAS Google Scholar
Young, J. et al. Regulation of microtubule-dependent recycling at the trans Golgi network by Rab6A and Rab6A′. Mol. Biol. Cell16, 162–177 (2005). ArticleCAS Google Scholar
Del Nery, E. et al. Rab6A and Rab6A′ GTPases play non-overlapping roles in membrane trafficking. Traffic7, 394–407 (2006). ArticleCAS Google Scholar
Grigoriev, I. et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev. Cell13, 305–314 (2007). ArticleCAS Google Scholar
Echard, A. et al. Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol. Biol. Cell11, 3819–3833 (2000). ArticleCAS Google Scholar
Utskarpen, A., Slagsvold, H. H., Iversen, T. G., Walchli, S. & Sandvig, K. Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A′. Traffic7, 663–672 (2006). ArticleCAS Google Scholar
Duran, J. M. et al. Myosin motors and not actin comets are mediators of the actin-based Golgi-to-endoplasmic reticulum protein transport. Mol. Biol. Cell14, 445–459 (2003). ArticleCAS Google Scholar
Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol.138, 291–306 (1997). ArticleCAS Google Scholar
Bresnick, A. R. Molecular mechanisms of nonmuscle myosin-II regulation. Curr. Opin. Cell Biol.11, 26–33 (1999). ArticleCAS Google Scholar
Conti, M. A. & Adelstein, R. S. Nonmuscle myosin II moves in new directions. J. Cell Sci.121, 11–18 (2008). ArticleCAS Google Scholar
Maupin, P., Phillips, C. L., Adelstein, R. S. & Pollard, T. D. Differential localization of myosin-II isozymes in human cultured cells and blood cells. J. Cell Sci.107 (Pt 11), 3077–3090 (1994). Google Scholar
Ikonen, E. et al. Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J. Cell Sci.110 (Pt 18), 2155–2164 (1997). Google Scholar
Heimann, K., Percival, J. M., Weinberger, R., Gunning, P. & Stow, J. L. Specific isoforms oF-actin-binding proteins on distinct populations of Golgi-derived vesicles. J. Biol. Chem.274, 10743–10750 (1999). ArticleCAS Google Scholar
Nizak, C. et al. Recombinant antibodies against subcellular fractions used to track endogenous Golgi protein dynamics in vivo. Traffic4, 739–753 (2003). ArticleCAS Google Scholar
Fath, K. R. Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil. Cytoskeleton60, 222–235 (2005). ArticleCAS Google Scholar
Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science299, 1743–1747 (2003). ArticleCAS Google Scholar
Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science273, 245–248 (1996). ArticleCAS Google Scholar
Egea, G., Lazaro-Dieguez, F. & Vilella, M. Actin dynamics at the Golgi complex in mammalian cells. Curr. Opin. Cell Biol.18, 168–178 (2006). ArticleCAS Google Scholar
De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol.9, 273–284 (2008). ArticleCAS Google Scholar
Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods5, 605–607 (2008). ArticleCAS Google Scholar
Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol.143, 1485–1503 (1998). ArticleCAS Google Scholar
Lahtinen, U., Hellman, U., Wernstedt, C., Saraste, J. & Pettersson, R. F. Molecular cloning and expression of a 58-kDa cis Golgi and intermediate compartment protein. J. Biol. Chem.271, 4031–4037 (1996). ArticleCAS Google Scholar
Lazaro-Dieguez, F. et al. Variable actin dynamics requirement for the exit of different cargo from the trans Golgi network. FEBS Lett.581, 3875–3881 (2007). ArticleCAS Google Scholar
Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol.169, 285–295 (2005). ArticleCAS Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol.7, 404–414 (2006). ArticleCAS Google Scholar
Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans Golgi network. J. Cell Biol.165, 781–788 (2004). ArticleCAS Google Scholar
Dubois, T. et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat. Cell Biol.7, 353–364 (2005). ArticleCAS Google Scholar
Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell134, 148–161 (2008). ArticleCAS Google Scholar
Salvarezza, S. B. et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol. Biol. Cell20, 438–451 (2009). ArticleCAS Google Scholar
von Blume, J. et al. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans Golgi network. J. Cell Biol.187, 1055–1069 (2009). ArticleCAS Google Scholar
Dippold, H. C. et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell139, 337–351 (2009). ArticleCAS Google Scholar
Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol.14, 428–433 (2002). ArticleCAS Google Scholar
Ikonen, E., Parton, R. G., Lafont, F. & Simons, K. Analysis of the role of p200-containing vesicles in post-Golgi traffic. Mol. Biol. Cell7, 961–974 (1996). ArticleCAS Google Scholar
Simon, J. P. et al. Coatomer, but not P200/myosin II, is required for the in vitro formation of trans-Golgi network-derived vesicles containing the envelope glycoprotein of vesicular stomatitis virus. Proc. Natl Acad. Sci. USA95, 1073–1078 (1998). ArticleCAS Google Scholar
Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell17, 712–723 (2009). ArticleCAS Google Scholar
Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J.24, 1537–1545 (2005). ArticleCAS Google Scholar
Liu, A. P. & Fletcher, D. A. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J.91, 4064–4070 (2006). ArticleCAS Google Scholar
Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA103, 10277–10282 (2006). ArticleCAS Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat. Cell Biol.2, 125–127 (2000). ArticleCAS Google Scholar
Cao, H. et al. Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nat. Cell Biol.7, 483–492 (2005). ArticleCAS Google Scholar
Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol.7, 570–580 (2005). ArticleCAS Google Scholar
Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans Golgi network. Nat. Cell Biol.6, 106–112 (2004). ArticleCAS Google Scholar
Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol.6, 393–404 (2004). ArticleCAS Google Scholar
Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science279, 580–585 (1998). ArticleCAS Google Scholar
White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol.147, 743–760 (1999). ArticleCAS Google Scholar
Matanis, T. et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nat. Cell Biol.4, 986–992 (2002). ArticleCAS Google Scholar
Fernandes, H. et al. Structural aspects of Rab6-effector complexes. Biochem. Soc. Trans.37, 1037–1041 (2009). ArticleCAS Google Scholar
Sun, Y. et al. Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol. Biol. Cell18, 4129–4142 (2007). ArticleCAS Google Scholar
Smith, R. D. et al. The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic10, 1502–1517 (2009). ArticleCAS Google Scholar
Rios, R. M., Sanchis, A., Tassin, A. M., Fedriani, C. & Bornens, M. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell118, 323–335 (2004). ArticleCAS Google Scholar
Monier, S., Jollivet, F., Janoueix-Lerosey, I., Johannes, L. & Goud, B. Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic3, 289–297 (2002). Article Google Scholar
Miserey-Lenkei, S., Lenkei, Z., Parnot, C., Corvol, P. & Clauser, E. A functional enhanced green fluorescent protein (EGFP)-tagged angiotensin II at(1a) receptor recruits the endogenous Galphaq/11 protein to the membrane and induces its specific internalization independently of receptor-g protein coupling in HEK-293 cells. Mol. Endocrinol.15, 294–307 (2001). CASPubMed Google Scholar
Broschat, K. O., Stidwill, R. P. & Burgess, D. R. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell35, 561–571 (1983). ArticleCAS Google Scholar
Loiodice, I. et al. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell15, 3333–3344 (2004). ArticleCAS Google Scholar