Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex (original) (raw)
- Brief Communication
- Published: 25 November 2002
- Anna Akhmanova3 na1,
- Phebe Wulf2,
- Elaine Del Nery4,
- Thomas Weide1,
- Tatiana Stepanova3,
- Niels Galjart3,
- Frank Grosveld3,
- Bruno Goud4,
- Chris I. De Zeeuw2,
- Angelika Barnekow1 &
- …
- Casper C. Hoogenraad2 nAff6
Nature Cell Biology volume 4, pages 986–992 (2002)Cite this article
- 3507 Accesses
- 4 Altmetric
- Metrics details
An Erratum to this article was published on 01 January 2003
Abstract
The small GTPase Rab6a is involved in the regulation of membrane traffic from the Golgi apparatus towards the endoplasmic reticulum (ER) in a coat complex coatomer protein I (COPI)-independent pathway1,2,3,4,5,6. Here, we used a yeast two-hybrid approach to identify binding partners of Rab6a. In particular, we identified the dynein–dynactin-binding protein Bicaudal-D1 (BICD1), one of the two mammalian homologues of Drosophila Bicaudal-D7,8,9,10. BICD1 and BICD2 colocalize with Rab6a on the _trans_-Golgi network (TGN) and on cytoplasmic vesicles, and associate with Golgi membranes in a Rab6-dependent manner. Overexpression of BICD1 enhances the recruitment of dynein–dynactin to Rab6a-containing vesicles. Conversely, overexpression of the carboxy-terminal domain of BICD, which can interact with Rab6a but not with cytoplasmic dynein, inhibits microtubule minus-end-directed movement of green fluorescent protein (GFP)–Rab6a vesicles and induces an accumulation of Rab6a and COPI-independent ER cargo in peripheral structures. These data suggest that coordinated action between Rab6a, BICD and the dynein–dynactin complex controls COPI-independent Golgi–ER transport.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
Accession codes
Accessions
GenBank/EMBL/DDBJ
References
- Rothman, J. E. & Wieland, F. T. Science 272, 227–234 (1996).
Article CAS PubMed Google Scholar - Schekman, R. & Orci, L. Science 271, 1526–1533 (1996).
Article CAS PubMed Google Scholar - Girod, A. et al. Nature Cell Biol. 1, 423–430 (1999).
Article CAS PubMed Google Scholar - White, J. et al. J. Cell Biol. 147, 743–760 (1999).
Article CAS PubMed PubMed Central Google Scholar - Storrie, B., Pepperkok, R. & Nilsson, T. Trends Cell Biol. 10, 385–391 (2000).
Article CAS PubMed Google Scholar - Martinez, O. et al. Proc. Natl Acad. Sci. USA 94, 1828–1833 (1997).
Article CAS PubMed PubMed Central Google Scholar - Bullock, S. L. & Ish-Horowicz, D. Nature 414, 611–616 (2001).
Article CAS PubMed Google Scholar - Hoogenraad, C. C. et al. EMBO J. 20, 4041–4054 (2001).
Article CAS PubMed PubMed Central Google Scholar - Baens, M. & Marynen, P. Genomics 45, 601–606 (1997).
Article CAS PubMed Google Scholar - Swan, A., Nguyen, T. & Suter, B. Nature Cell Biol. 1, 444–449 (1999).
Article CAS PubMed Google Scholar - Johannes, L. & Goud, B. Trends Cell Biol. 8, 158–162 (1998).
Article CAS PubMed Google Scholar - Zerial, M. & McBride, H. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).
Article CAS Google Scholar - Pfeffer, S. R. Trends Cell Biol. 11, 487–491 (2001).
Article CAS PubMed Google Scholar - Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. J. Cell Biol. 156, 715–724 (2002).
Article CAS PubMed PubMed Central Google Scholar - Echard, A. et al. Science 279, 580–585 (1998).
Article CAS PubMed Google Scholar - King, S. J. & Schroer, T. A. Nature Cell Biol. 2, 20–24 (2000).
Article CAS PubMed Google Scholar - Martinez, O. et al. J. Cell Biol. 127, 1575–1588 (1994).
Article CAS PubMed Google Scholar - Hoogenraad, C. C., Akhmanova, A., Grosveld, F., De Zeeuw, C. I. & Galjart, N. J. Cell Sci. 113, 2285–2297 (2000).
CAS PubMed Google Scholar - Schiedel, A. C., Barnekow, A. & Mayer, T. FEBS Lett. 376, 113–119 (1995).
Article CAS PubMed Google Scholar - Johannes, L., Tenza, D., Antony, C. & Goud, B. J. Biol. Chem. 272, 19554–19561 (1997).
Article CAS PubMed Google Scholar - Elbashir, S. M. et al. Nature 411, 494–498 (2001).
Article CAS PubMed Google Scholar - Akhmanova, A. et al. Cell 104, 923–935 (2001).
Article CAS PubMed Google Scholar - Suter, B., Romberg, L. M. & Steward, R. Genes Dev. 3, 1957–1968 (1989).
Article CAS PubMed Google Scholar - Purcell, K. & Artavanis-Tsakonas, S. J. Cell Biol. 146, 731–740 (1999).
Article CAS PubMed PubMed Central Google Scholar
Acknowledgements
We thank I. G. Macara, S. R. Pfeffer, D. Gallwitz, E. G. Berger and H. P. Hauri for providing reagents. We also thank M. Rosing, K. Bilbilis, M. Koester, E. Ossendorf and A. Theil for experimental assistance. This research was supported by grants from the Netherlands Organisation for Scientific Research (ZonMw/900-00-001), the Erasmus University and grants from Fonds der Chemischen Industrie (FCI) and Deutsche Forschungsgemeinschaft (DFG) to A.B. This study contains major parts of the PhD thesis of T.M. T.M. is a fellow of the Graduiertenfoerderung of Nordrhein-Westfalen.
Author information
Author notes
- Casper C. Hoogenraad
Present address: Picower Center for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue (E18-215), Cambridge, MA 02139, USA - Theodoros Matanis and Anna Akhmanova: These authors contributed equally to this work
Authors and Affiliations
- Department of Experimental Tumorbiology, University of Muenster, Badestrasse 9, Muenster, D-48149, Germany
Theodoros Matanis, Thomas Weide & Angelika Barnekow - Department of Neuroscience, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, 3000, DR, The Netherlands
Phebe Wulf, Chris I. De Zeeuw & Casper C. Hoogenraad - Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, 3000, DR, The Netherlands
Anna Akhmanova, Tatiana Stepanova, Niels Galjart & Frank Grosveld - UMR CNRS 144, Institut Curie, 26 rue d'Ulm, Paris, 75248, Cedex 05, France
Elaine Del Nery & Bruno Goud
Authors
- Theodoros Matanis
You can also search for this author inPubMed Google Scholar - Anna Akhmanova
You can also search for this author inPubMed Google Scholar - Phebe Wulf
You can also search for this author inPubMed Google Scholar - Elaine Del Nery
You can also search for this author inPubMed Google Scholar - Thomas Weide
You can also search for this author inPubMed Google Scholar - Tatiana Stepanova
You can also search for this author inPubMed Google Scholar - Niels Galjart
You can also search for this author inPubMed Google Scholar - Frank Grosveld
You can also search for this author inPubMed Google Scholar - Bruno Goud
You can also search for this author inPubMed Google Scholar - Chris I. De Zeeuw
You can also search for this author inPubMed Google Scholar - Angelika Barnekow
You can also search for this author inPubMed Google Scholar - Casper C. Hoogenraad
You can also search for this author inPubMed Google Scholar
Corresponding authors
Correspondence toAnna Akhmanova or Casper C. Hoogenraad.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Figure S1
Specificity of the #2293 and #2296 antibodies using immunofluorescence microscopy and colocalisation between BICD proteins and Golgi markers (JPG 239 kb)
Figure S2
Silencing of Rab6 in HeLa cells. (JPG 1160 kb)
Figure S3
BICD2-C causes peripheral accumulation of COPI-independent Golgi-ER cargo, but has no effect on GM130 and γ-adaptin (JPG 1126 kb)
Figure S4
BICD2-C has no effect on the microtubule network and induces no accumulation of dynein or dynactin. (JPG 713 kb)
Movie 1
GFP-Rab6A movement in HeLa cells (AVI 903 kb)
Movie 2
GFP-Rab6A movement in HeLa cells expressing BICD2-C (AVI 796 kb)
Rights and permissions
About this article
Cite this article
Matanis, T., Akhmanova, A., Wulf, P. et al. Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex.Nat Cell Biol 4, 986–992 (2002). https://doi.org/10.1038/ncb891
- Received: 19 July 2002
- Revised: 12 September 2002
- Accepted: 28 October 2002
- Published: 25 November 2002
- Issue Date: 01 December 2002
- DOI: https://doi.org/10.1038/ncb891