- Calvo, F., Agudo-Ibanez, L. & Crespo, P. The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 32, 412–421 (2010).
Article CAS Google Scholar
- Yao, Z. & Seger, R. The ERK signaling cascade—views from different subcellular compartments. Biofactors 35, 407–416 (2009).
Article CAS Google Scholar
- Avruch, J. MAP kinase pathways: the first twenty years. Biochim. Biophys. Acta 1773, 1150–1160 (2007).
Article CAS Google Scholar
- Raman, M., Chen, W. & Cobb, M. H. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007).
Article CAS Google Scholar
- Dhanasekaran, D. N. & Johnson, G. L. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26, 3097–3099 (2007).
Article CAS Google Scholar
- Rajakulendran, T., Sahmi, M., Lefrancois, M., Sicheri, F. & Therrien, M. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461, 542–545 (2009).
Article CAS Google Scholar
- Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209–221 (2010).
Article CAS Google Scholar
- Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427–430 (2010).
Article CAS Google Scholar
- Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).
Article CAS Google Scholar
- Meloche, S. & Pouyssegur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 (2007).
Article CAS Google Scholar
- Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).
Article CAS Google Scholar
- Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).
Article CAS Google Scholar
- Young, A. et al. Ras signaling and therapies. Adv. Cancer Res. 102, 1–17 (2009).
Article CAS Google Scholar
- Mody, A., Weiner, J. & Ramanathan, S. Modularity of MAP kinases allows deformation of their signalling pathways. Nat. Cell Biol. 11, 484–491 (2009).
Article CAS Google Scholar
- Johnson, G. L. & Gomez, S. M. Sequence patches on MAPK surfaces define protein–protein interactions. Genome Biol. 10, 222 (2009).
Article Google Scholar
- Tanoue, T., Adachi, M., Moriguchi, T. & Nishida, E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110–116 (2000).
Article CAS Google Scholar
- Enslen, H. & Davis, R. J. Regulation of MAP kinases by docking domains. Biol. Cell 93, 5–14 (2001).
Article CAS Google Scholar
- Bardwell, A. J., Frankson, E. & Bardwell, L. Selectivity of docking sites in MAPK kinases. J. Biol. Chem. 284, 13165–13173 (2009).
Article CAS Google Scholar
- Takekawa, M., Tatebayashi, K. & Saito, H. Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol. Cell 18, 295–306 (2005).
Article CAS Google Scholar
- Geiss-Friedlander, R. & Melchior, F. Concepts in SUMOylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).
Article CAS Google Scholar
- Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).
Article CAS Google Scholar
- Johnson, E. S. Protein modification by SUMO. Annu Rev. Biochem. 73, 355–382 (2004).
Article CAS Google Scholar
- Seeler, J. S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690–699 (2003).
Article CAS Google Scholar
- Hay, R. T. SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376 (2007).
Article CAS Google Scholar
- Muller, S., Hoege, C., Pyrowolakis, G. & Jentsch, S. SUMO, ubiquitin’s mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210 (2001).
Article CAS Google Scholar
- Kim, J. H. et al. Roles of SUMOylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat. Cell Biol. 8, 631–639 (2006).
Article CAS Google Scholar
- Steffan, J. S. et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104 (2004).
Article CAS Google Scholar
- Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell 131, 584–595 (2007).
Article CAS Google Scholar
- Kamitani, T., Nguyen, H. P. & Yeh, E. T. Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J. Biol. Chem. 272, 14001–14004 (1997).
Article CAS Google Scholar
- Uchimura, Y., Nakamura, M., Sugasawa, K., Nakao, M. & Saitoh, H. Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem. 331, 204–206 (2004).
CAS PubMed Google Scholar
- Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).
Article CAS Google Scholar
- Kranenburg, O., Verlaan, I. & Moolenaar, W. H. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 35301–35304 (1999).
Article CAS Google Scholar
- Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D. & Morrison, D. K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).
Article CAS Google Scholar
- Terai, K. & Matsuda, M. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep. 6, 251–255 (2005).
Article CAS Google Scholar
- Xu, J. et al. Insulin enhances growth hormone induction of the MEK/ERK signaling pathway. J. Biol. Chem. 281, 982–992 (2006).
Article CAS Google Scholar
- Galperin, E. & Sorkin, A. Endosomal targeting of MEK2 requires RAF, MEK kinase activity and clathrin-dependent endocytosis. Traffic 9, 1776–1790 (2008).
Article CAS Google Scholar
- Liu, Y., Fisher, D. A. & Storm, D. R. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J. Neurosci. 14, 5807–5817 (1994).
Article CAS Google Scholar
- Liang, X., Lu, Y., Neubert, T. A. & Resh, M. D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem. 277, 33032–33040 (2002).
Article CAS Google Scholar
- Jakobs, A. et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyse function of protein SUMOylation. Nat. Methods 4, 245–250 (2007).
Article CAS Google Scholar
- Bardwell, A. J., Flatauer, L. J., Matsukuma, K., Thorner, J. & Bardwell, L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276, 10374–10386 (2001).
Article CAS Google Scholar
- Xu, B., Stippec, S., Robinson, F. L. & Cobb, M. H. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J. Biol. Chem. 276, 26509–26515 (2001).
Article CAS Google Scholar
- Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350 (2002).
CAS PubMed Google Scholar
- Lerner, E. C. et al. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15, 1283–1288 (1997).
Article CAS Google Scholar
- Karandikar, M., Xu, S. & Cobb, M. H. MEKK1 binds raf-1 and the ERK2 cascade components. J. Biol. Chem. 275, 40120–40127 (2000).
Article CAS Google Scholar
- Saltzman, A. et al. hUBC9 associates with MEKK1 and type I TNF-α receptor and stimulates NFκB activity. FEBS Lett. 425, 431–435 (1998).
Article CAS Google Scholar
- Li, T. et al. SUMOylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl Acad. Sci. USA 101, 8551–8556 (2004).
Article CAS Google Scholar
- Russell, M., Lange-Carter, C. A. & Johnson, G. L. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J. Biol. Chem. 270, 11757–11760 (1995).
Article CAS Google Scholar
- Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005).
Article CAS Google Scholar
- Dadke, S. et al. Regulation of protein tyrosine phosphatase 1B by SUMOylation. Nat. Cell Biol. 9, 80–85 (2007).
Article CAS Google Scholar
- Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).
Article CAS Google Scholar
- Murphy, L. O. & Blenis, J. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268–275 (2006).
Article CAS Google Scholar
- Yamamoto, T. et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol. 16, 1171–1182 (2006).
Article CAS Google Scholar
- Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H. & Hunter, T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol. Cell 9, 945–956 (2002).
Article CAS Google Scholar
- Witowsky, J. A. & Johnson, G. L. Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J. Biol. Chem. 278, 1403–1406 (2003).
Article CAS Google Scholar
- Sobko, A., Ma, H. & Firtel, R. A. Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev. Cell 2, 745–756 (2002).
Article CAS Google Scholar
- Kang, J. S., Saunier, E. F., Akhurst, R. J. & Derynck, R. The type I TGF-β receptor is covalently modified and regulated by SUMOylation. Nat. Cell Biol. 10, 654–664 (2008).
Article CAS Google Scholar
- Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-_κ_B activation. Mol. Cell 2, 233–239 (1998).
Article CAS Google Scholar
- Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 4, 937–947 (2004).
Article CAS Google Scholar
- Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H. & Takekawa, M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10, 1324–1332 (2008).
Article CAS Google Scholar
- Akiyama, T. et al. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol. Cell Biol. 11, 833–842 (1991).
Article CAS Google Scholar
- Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–372 (1999).
Article CAS Google Scholar
- Wohlschlegel, J. A., Johnson, E. S., Reed, S. I. & Yates, J. R. 3rd Improved identification of SUMO attachment sites using C-terminal SUMOmutants and tailored protease digestion strategies. J. Proteome Res. 5, 761–770 (2006).
Article CAS Google Scholar
- Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).
Article CAS Google Scholar
- Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).
Article CAS Google Scholar
- Cuevas, B. D., Winter-Vann, A. M., Johnson, N. L. & Johnson, G. L. MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer. Oncogene 25, 4998–5010 (2006).
Article CAS Google Scholar