Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition (original) (raw)
Ahn, N.G. et al. Multiple components in an epidermal growth factor–stimulated protein kinase cascade: in vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J. Biol. Chem.266, 4220–4227 (1991). CASPubMed Google Scholar
Zheng, C-F. & Guan, K. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem.268, 11435–11439 (1993). CASPubMed Google Scholar
Dhanasekaran, N. & Reddy, P. Signaling by dual-specificity kinases. Oncogene17, 1447–1455 (1998). ArticleCAS Google Scholar
Kolch, W. Ras/Raf signaling and emerging pharmacotherapeutic targets. Expert Opin. Pharmacother.3, 709–718 (2002). ArticleCAS Google Scholar
Schaeffer, H.J. & Weber, M.J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol.19, 2435–2444 (1999). ArticleCAS Google Scholar
Lewis, T.S., Shapiro P.S. & Ahn, N.G. Signal transduction through MAP kinase cascades. Adv. Cancer Res.74, 49–139 (1998). ArticleCAS Google Scholar
Alessi, D.R. et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74 Raf-1. EMBO J.13, 1610–1619 (1994). ArticleCAS Google Scholar
Herrera, R. & Sebolt-Leopold, J.S. Unravelling the complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol. Med.8, S27–S31 (2002). ArticleCAS Google Scholar
Kyriakis, J.M. & Avruch, J. Mammalian mitogen-activated signal transduction pathways activated by stress and inflammation. Physiol. Rev.81, 807–869 (2002). Article Google Scholar
Dudley, D.T., Pang, L., Decker, S.J., Bridges, A.J. & Saltiel, A.R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA92, 7686–7689 (1995). ArticleCAS Google Scholar
Sebolt-Leopold, J.S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumours in vivo. Nat. Med.5, 810–816 (1999). ArticleCAS Google Scholar
Delaney, A.M., Printen, J.A., Chen, H., Fauman, E.B. & Dudley, D.T. Identification of a novel mitogen-activated protein kinase kinase activation domain recognized by the inhibitor PD184352. Mol. Cell. Biol.22, 7593–7602 (2002). ArticleCAS Google Scholar
Dang, A., Frost, J.A. & Cobb, M.H. The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J. Biol. Chem.273, 19909–19913 (1998). ArticleCAS Google Scholar
Hanks, S.K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J.9, 576–596 (1995). ArticleCAS Google Scholar
Zheng, J. et al. 2.2 Å refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr. D49, 362–365 (1993). ArticleCAS Google Scholar
Hubbard, S.R. et al. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J.16, 5572–5581 (1997). ArticleCAS Google Scholar
Janin, J. & Chothia, C. The structure of protein-protein recognition sites. J. Biol. Chem.265, 16027–16030 (1990). CAS Google Scholar
Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S. & Overington, J.P. JOY: protein sequence-structure representation and analysis. Bioinformatics14, 617–623 (1998). ArticleCAS Google Scholar
De Azevedo, W.F. et al. Structural basis for specificity and potency of a flavonoid inhibitor of human Cdk2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA93, 2735–2740 (1996). ArticleCAS Google Scholar
Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol.9, 268–272 (2002). ArticleCAS Google Scholar
Schindler, T. et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science289, 1938–1942 (2000). ArticleCAS Google Scholar
De Bondt, H. et al. Crystal structure of cyclin-dependent kinase 2. Nature363, 595–602 (1993). ArticleCAS Google Scholar
Xu, W. et al. Three-dimensional structure of the tyrosine kinase c-Src. Nature385, 595–602 (1997). ArticleCAS Google Scholar
Sicheri, F. et al. Crystal structure of the Src family tyrosine kinase Hck. Nature385, 602–609 (1997). ArticleCAS Google Scholar
Parang, K. & Cole, P.A. Designing bisubstrate analog inhibitors for protein kinases. Pharmacol. Ther.93, 145–157 (2002). ArticleCAS Google Scholar
Manning, G. et al. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). ArticleCAS Google Scholar
Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J.351, 95–105 (2000). ArticleCAS Google Scholar
Mody, N., Leitch, J., Armstrong, C., Dixon, J. & Cohen, P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett.502, 21–24 (2001). ArticleCAS Google Scholar
Kailesh, G. et al. Negative regulation of MAPKK by phosphorylation of a conserved serine residue equivalent to Ser212 of MEK1 J. Biol. Chem.278, 8118–8125 (2003). Article Google Scholar
Zhang, J., Zhou, B., Zheng, C-F. & Zhang, Z-Y. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J. Biol. Chem.278, 29901–29912 (2003). ArticleCAS Google Scholar
Robinson, F.L., Whitehurst, A.W., Raman, M. & Cobb, M.H. Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J. Biol. Chem.277, 14848–14852 (2002). Google Scholar
Wilsbacher, J.L., Goldsmith, E.J. & Cobb, M.H. Phosphorylation of MAP kinase by MAP/ERK involves multiple regions of MAP kinases. J. Biol. Chem.274, 16988–16994 (1999). ArticleCAS Google Scholar
Yang, C. & Pflugrath, J.W. Applications of anomalous scattering from S atoms for improved phasing of protein diffraction data collected at Cu K wavelength. Acta Crystallogr. D57, 1480–1490 (2001). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Brunger, A.T. et al. Crystallography & NMR system (CNS): a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997). ArticleCAS Google Scholar
Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
Vagin, A.A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr.30, 1022–1025 (1997). ArticleCAS Google Scholar
Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S.E., Rowe, A.J. & Horton, J.C.) 90–125 (The Royal Society of Chemistry, Cambridge, 1992). Google Scholar
Carson, M. Ribbon models of macromolecules. J. Mol. Graphics5, 103–106 (1987). ArticleCAS Google Scholar