Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells (original) (raw)
References
Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol.4, 691–698 (2002). ArticleCAS Google Scholar
Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell135, 1263–1275 (2008). ArticleCAS Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). ArticleCAS Google Scholar
Goldstein, J. L. & Brown, M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem.46, 897–930 (1977). ArticleCAS Google Scholar
Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat. Genet.37, 289–294 (2005). Article Google Scholar
Moradpour, D., Penin, F. & Rice, C. M. Replication of hepatitis C virus. Nat. Rev. Microbiol.5, 453–463 (2007). ArticleCAS Google Scholar
Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol.17, 517–568 (2001). ArticleCAS Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123, 305–320 (2005). ArticleCAS Google Scholar
Rappoport, J. Z., Kemal, S., Benmerah, A. & Simon, S. M. Dynamics of clathrin and adaptor proteins during endocytosis. Am. J. Physiol.291, C1072–C1081 (2006). ArticleCAS Google Scholar
Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. Plos Biol.7, e1000191 (2009). Article Google Scholar
Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. Plos Biol.7, 628–639 (2009). Article Google Scholar
Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell118, 591–605 (2004). ArticleCAS Google Scholar
Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol.83, 13–18 (2004). ArticleCAS Google Scholar
Soulet, F., Yarar, D., Leonard, M. & Schmid, S. L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell16, 2058–2067 (2005). ArticleCAS Google Scholar
Knoops, L., Hornakova, T., Royer, Y., Constantinescu, S. N. & Renauld, J. C. JAK kinases overexpression promotes in vitro cell transformation. Oncogene27, 1511–1519 (2008). ArticleCAS Google Scholar
Kuma, A., Matsui, M. & Mizushima, N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy3, 323–328 (2007). ArticleCAS Google Scholar
Luo, T., Matsuo-Takasaki, M. & Sargent, T. D. Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus. Mol. Reprod. Dev.60, 331–337 (2001). ArticleCAS Google Scholar
Miyama, K. et al. A BMP-inducible gene, dlx5, regulates osteoblast differentiation and mesoderm induction. Dev. Biol.208, 123–133 (1999). ArticleCAS Google Scholar
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell83, 121–127 (1995). ArticleCAS Google Scholar
Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135 (1995). ArticleCAS Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet.11, 636–646 (2010). ArticleCAS Google Scholar
Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol.188, 919–933 (2010). ArticleCAS Google Scholar
Mettlen, M. et al. Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol. Biol. Cell20, 3251–3260 (2009). ArticleCAS Google Scholar
Liu, Y. W., Surka, M. C., Schroeter, T., Lukiyanchuk, V. & Schmid, S. L. Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol. Biol. Cell19, 5347–5359 (2008). ArticleCAS Google Scholar
Huang, F., Khvorova, A., Marshall, W. & Sorking, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol. Chem.279, 16657–16661 (2004). ArticleCAS Google Scholar
Mettlen, M., Pucadyil, T., Ramachandran, R. & Schmid, S. L. Dissecting dynamin's role in clathrin-mediated endocytosis. Biochem. Soc. Trans.37, 1022–1026 (2009). ArticleCAS Google Scholar
Kirchhausen, T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol.19, 596–605 (2009). ArticleCAS Google Scholar
Le Clainche, C. et al. A Hip1R-cortactin complex negatively regulates actin assembly associated with endocytosis. EMBO J.26, 1199–1210 (2007). ArticleCAS Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment and membrane scission observed in live cells. Cell121, 593–606 (2005). ArticleCAS Google Scholar
DeKelver, R. C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res.20, 1133–1142 (2010). ArticleCAS Google Scholar
Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol.27, 851–857 (2009). ArticleCAS Google Scholar
Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promotor. Nat. Biotechnol.19, 656–660 (2001). ArticleCAS Google Scholar
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). ArticleCAS Google Scholar
DeKelver, R. C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res.20, 1133–1142 (2010). ArticleCAS Google Scholar
Doyon, Y. et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods8, 74–79 (2011). ArticleCAS Google Scholar
Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol.155, 291–300 (2001). ArticleCAS Google Scholar
Shaner, N. C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods5, 545–551 (2008). ArticleCAS Google Scholar
Doyon, Y. et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat. Methods7, 459–460 (2010). ArticleCAS Google Scholar