Genome editing with engineered zinc finger nucleases (original) (raw)
Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther.15, 1463–1468 (2008). CASPubMedPubMed Central Google Scholar
Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science300, 764 (2003). References 2 and 3 are early studies in the field of genome editing that applied ZFNs for the disruption and correction of endogenous genes inD. melanogaster. CASPubMed Google Scholar
Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA93, 1156–1160 (1996). CASPubMedPubMed Central Google Scholar
Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol.21, 289–297 (2001). CASPubMedPubMed Central Google Scholar
Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J.4, 1609–1614 (1985). This paper describes the discovery of the Cys2-His2 zinc finger — the most common DNA recognition motif in metazoa. CASPubMedPubMed Central Google Scholar
Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct.29, 183–212 (2000). CASPubMed Google Scholar
Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science252, 809–817 (1991). This study describes the first X-ray structure of a Cys2-His2 ZFP–DNA complex. CASPubMed Google Scholar
Segal, D. J. et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry42, 2137–2148 (2003). CASPubMed Google Scholar
Rebar, E. J. & Pabo, C. O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science263, 671–673 (1994). CASPubMed Google Scholar
Jamieson, A. C., Kim, S. H. & Wells, J. A. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry33, 5689–5695 (1994). CASPubMed Google Scholar
Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D. & Barbas, C. F. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem.276, 29466–29478 (2001). ArticleCASPubMed Google Scholar
Dreier, B. et al. Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem.280, 35588–35597 (2005). ArticleCASPubMed Google Scholar
Segal, D. J., Dreier, B., Beerli, R. R. & Barbas, C. F. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl Acad. Sci. USA96, 2758–2763 (1999). CASPubMedPubMed Central Google Scholar
Choo, Y. & Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl Acad. Sci. USA91, 11163–11167 (1994). CASPubMedPubMed Central Google Scholar
Bae, K. H. et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nature Biotech.21, 275–280 (2003). CAS Google Scholar
Kim, H. J., Lee, H. J., Kim, H., Cho, S. W. & Kim, J. S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res.19, 1279–1288 (2009). CASPubMedPubMed Central Google Scholar
Segal, D. J., Crotty, J. W., Bhakta, M. S., Barbas, C. F. & Horton, N. C. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J. Mol. Biol.363, 405–421 (2006). CASPubMed Google Scholar
Wolfe, S. A., Grant, R. A., Elrod-Erickson, M. & Pabo, C. O. Beyond the 'recognition code' structures of two Cys2His2 zinc finger/TATA box complexes. Structure9, 717–723 (2001). CASPubMed Google Scholar
Pavletich, N. P. & Pabo, C. O. Crystal structure of a five-finger GLI–DNA complex: new perspectives on zinc fingers. Science261, 1701–1707 (1993). CASPubMed Google Scholar
Fairall, L., Schwabe, J. W., Chapman, L., Finch, J. T. & Rhodes, D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature366, 483–487 (1993). CASPubMed Google Scholar
Houbaviy, H. B., Usheva, A., Shenk, T. & Burley, S. K. Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. Proc. Natl Acad. Sci. USA93, 13577–13582 (1996). CASPubMedPubMed Central Google Scholar
Nolte, R. T., Conlin, R. M., Harrison, S. C. & Brown, R. S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl Acad. Sci. USA95, 2938–2943 (1998). CASPubMedPubMed Central Google Scholar
Ramirez, C. L. et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods5, 374–375 (2008). CASPubMedPubMed Central Google Scholar
Vanamee, E. S., Santagata, S. & Aggarwal, A. K. FokI requires two specific DNA sites for cleavage. J. Mol. Biol.309, 69–78 (2001). CASPubMed Google Scholar
Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotech.25, 778–785 (2007). CAS Google Scholar
Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotech.25, 786–793 (2007). CAS Google Scholar
Shimizu, Y., Bhakta, M. S. & Segal, D. J. Restricted spacer tolerance of a zinc finger nuclease with a six amino acid linker. Bioorg. Med. Chem. Lett.19, 3970–3972 (2009). CASPubMedPubMed Central Google Scholar
Handel, E. M., Alwin, S. & Cathomen, T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol. Ther.17, 104–111 (2009). PubMed Google Scholar
Guo, J., Gaj, T. & Barbas, C. F. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol.400, 96–107 (2010). CASPubMedPubMed Central Google Scholar
Moynahan, M. E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Rev. Mol. Cell Biol.11, 196–207 (2010). CAS Google Scholar
Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem.79, 181–211 (2010). CASPubMedPubMed Central Google Scholar
Beumer, K. J. et al. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc. Natl Acad. Sci. USA105, 19821–19826 (2008). CASPubMedPubMed Central Google Scholar
Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotech.26, 702–708 (2008). CAS Google Scholar
Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. & Wolfe, S. A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotech.26, 695–701 (2008). CAS Google Scholar
Foley, J. E. et al. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE4, e4348 (2009). PubMedPubMed Central Google Scholar
Mashimo, T. et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE5, e8870 (2010). PubMedPubMed Central Google Scholar
Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA102, 2232–2237 (2005). CASPubMedPubMed Central Google Scholar
Zhang, F. et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl Acad. Sci. USA107, 12023–12028 (2010). Google Scholar
Osakabe, K., Osakabe, Y. & Toki, S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl Acad. Sci. USA, 107, 12034–12039 (2010). CASPubMedPubMed Central Google Scholar
Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell44, 419–428 (1986). CASPubMed Google Scholar
Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res.32, e3 (2004). PubMedPubMed Central Google Scholar
Ruis, B. L., Fattah, K. R. & Hendrickson, E. A. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol. Cell Biol.28, 6182–6195 (2008). CASPubMedPubMed Central Google Scholar
Khan, I. F. et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther.18, 1192–1199 (2010). CASPubMedPubMed Central Google Scholar
Doyon, Y., Vo, T., Choi, V. M., Gregory, P. D. & Holmes, M. C. A transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nature Methods7, 459–460 (2010). CASPubMed Google Scholar
Santiago, Y. et al. Targeted gene knockout in mammalian cells using engineered zinc finger nucleases. Proc. Natl Acad. Sci. USA105, 5809–5814 (2008). CASPubMedPubMed Central Google Scholar
Cost, G. J. et al. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol. Bioeng.105, 330–340 (2009). Google Scholar
Liu, P. Q. et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol. Bioeng.106, 97–105 (2010). CASPubMed Google Scholar
Lee, H. J., Kim, E. & Kim, J. S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res.20, 81–89 (2010). CASPubMedPubMed Central Google Scholar
Orlando, S. et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 8 Jun 2010 (doi:10.1093/nar/gkq512). PubMedPubMed Central Google Scholar
Petolino, J. F. et al. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol.73, 617–628 (2010). CASPubMed Google Scholar
Brunet, E. et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl Acad. Sci. USA106, 10620–10625 (2009). CASPubMedPubMed Central Google Scholar
Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science277, 831–834 (1997). CASPubMed Google Scholar
Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol.14, 8096–8106 (1994). The conclusion drawn by this paper — that the DNA ends generated by a DSB in a mitotically dividing mammalian cell are recombinogenic — provided a starting point for the development of genome editing. See also reference 57. CASPubMedPubMed Central Google Scholar
Puchta, H., Dujon, B. & Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res.21, 5034–5040 (1993). CASPubMedPubMed Central Google Scholar
Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). PubMed Google Scholar
Bozas, A., Beumer, K. J., Trautman, J. K. & Carroll, D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics182, 641–651 (2009). This paper provides the first comprehensive study of the intranuclear requirements for resolving an endogenous DSB by NHEJ rather than HDR. CASPubMedPubMed Central Google Scholar
Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J. K. & Carroll, D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics172, 2391–2403 (2006). CASPubMedPubMed Central Google Scholar
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). CASPubMed Google Scholar
Maeder, M. L. et al. Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell31, 294–301 (2008). CASPubMedPubMed Central Google Scholar
Townsend, J. A. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature459, 442–445 (2009). CASPubMedPubMed Central Google Scholar
Formosa, T. & Alberts, B. M. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell47, 793–806 (1986). CASPubMed Google Scholar
Nassif, N., Penney, J., Pal, S., Engels, W. R. & Gloor, G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell Biol.14, 1613–1625 (1994). CASPubMedPubMed Central Google Scholar
Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA104, 3055–3060 (2007). CASPubMedPubMed Central Google Scholar
Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell140, 678–691 (2010). CASPubMedPubMed Central Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotech.25, 1298–1306 (2007). CAS Google Scholar
Benabdallah, B. F. et al. Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy12, 394–399 (2010). CASPubMed Google Scholar
Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Stem Cell5, 97–110 (2009). CAS Google Scholar
Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotech.27, 851–857 (2009). CAS Google Scholar
DeKelver, R. C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human. Genome Res.20, 1133–1142 (2010). A useful feature of ZFN-driven genome editing is the ability it provides to perform mammalian somatic cell genetics experiments in isogenic settings. This paper provides several examples of such isogenic engineering. CASPubMedPubMed Central Google Scholar
Hanin, M. & Paszkowski, J. Plant genome modification by homologous recombination. Curr. Opin. Plant Biol.6, 157–162 (2003). CASPubMed Google Scholar
Cai, C. Q. et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol.69, 699–709 (2009). CASPubMed Google Scholar
Shukla, V. K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature459, 437–441 (2009). CASPubMed Google Scholar
Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotech.26, 808–816 (2008). This paper provides data underlying the first clinical trial on the genome editing of human cells. See also reference 81. CAS Google Scholar
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science249, 505–510 (1990). CASPubMed Google Scholar
Blackwell, T. K. & Weintraub, H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science250, 1104–1110 (1990). CASPubMed Google Scholar
Phillips, C. M. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in, C. elegans. Nature Cell Biol.11, 934–942 (2009). CASPubMed Google Scholar
Reik, A. et al. Zinc finger nucleases targeting the glucocorticoid receptor allow IL-13 zetakine transgenic CTLs to kill glioblastoma cells in vivo in the presence of immunosuppressing glucocorticoids. Mol. Ther.16, S13–S14 (2008). Google Scholar
Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nuclease targeted to CCR5 control HIV-1 in vivo. Nature Biotech. 20 Jul 2010 (doi:10.1038/nbt.1663). CASPubMedPubMed Central Google Scholar
Bot., A. The landmark approval of Provenge, what it means to immunology and 'in this issue': the complex relation between vaccines and autoimmunity. Int. Rev. Immunol.29, 235–238 (2010). CASPubMed Google Scholar
Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med.360, 692–698 (2009). PubMed Google Scholar
Hurt, J. A., Thibodeau, S. A., Hirsh, A. S., Pabo, C. O. & Joung, J. K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl Acad. Sci. USA100, 12271–12276 (2003). CASPubMedPubMed Central Google Scholar
Mandell, J. G. & Barbas, C. F. Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res.34, W516–W523 (2006). CASPubMedPubMed Central Google Scholar
Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F. & Dobbs, D. An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Res.37, 506–515 (2009). CASPubMed Google Scholar
Moore, M., Klug, A. & Choo, Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc. Natl Acad. Sci. USA98, 1437–1441 (2001). CASPubMedPubMed Central Google Scholar
Bartsevich, V. V. & Juliano, R. L. Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol. Pharmacol.58, 1–10 (2000). CASPubMed Google Scholar
Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nature Biotech.19, 656–660 (2001). CAS Google Scholar
Greisman, H. A. & Pabo, C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science275, 657–661 (1997). CASPubMed Google Scholar
Rebar, E. J. & Miller, J. C. Design and applications of engineered zinc finger proteins. Biotech International 20–23 (April/May 2004).
Malphettes, L. et al. Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol. Bioeng.106, 774–783 (2010). CASPubMed Google Scholar
Siekmann, A. F., Standley, C., Fogarty, K. E., Wolfe, S. A. & Lawson, N. D. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev.23, 2272–2277 (2009). CASPubMedPubMed Central Google Scholar
Del Prete, G. Q. et al. Derivation and characterization of a simian immunodeficiency virus SIVmac239 variant with tropism for CXCR4. J. Virol.83, 9911–9922 (2009). CASPubMedPubMed Central Google Scholar