Phagocytic activity of neuronal progenitors regulates adult neurogenesis (original) (raw)
van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature415, 1030–1034 (2002). ArticleCAS Google Scholar
Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med.4, 1313–1317 (1998). ArticleCAS Google Scholar
Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell132, 645–660 (2008). ArticleCAS Google Scholar
Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science294, 2127–2130 (2001). ArticleCAS Google Scholar
Rakic, P. Adult neurogenesis in mammals: an identity crisis. J. Neurosci.22, 614–618 (2002). Article Google Scholar
Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci.3, 65–71 (2002). ArticleCAS Google Scholar
Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature386, 493–495 (1997). ArticleCAS Google Scholar
Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci.9, 268–275 (2006). ArticleCAS Google Scholar
Leuner, B. et al. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J. Neurosci.24, 7477–7481 (2004). ArticleCAS Google Scholar
Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci.2, 260–265 (1999). ArticleCAS Google Scholar
Wolf, S. A. et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol.182, 3979–3984 (2009). ArticleCAS Google Scholar
Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M. & Gage, F. H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development130, 391–399 (2003). ArticleCAS Google Scholar
Kronenberg, G. et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol.467, 455–463 (2003). Article Google Scholar
Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones ofneuronal development in the adult hippocampus. Trends Neurosci.27, 447–452 (2004). ArticleCAS Google Scholar
Ma, D. K., Kim, W. R., Ming, G. L. & Song, H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. N Y Acad. Sci.1170, 664–673 (2009). Article Google Scholar
Mandyam, C. D., Harburg, G. C. & Eisch, A. J. Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience146, 108–122 (2007). ArticleCAS Google Scholar
Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol.223, 177–194 (2011). ArticleCAS Google Scholar
Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell140, 619–630 (2010). ArticleCAS Google Scholar
Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol.189, 1059–1070 (2010). ArticleCAS Google Scholar
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–716 (1999). ArticleCAS Google Scholar
Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci.3, 1091–1097 (2000). ArticleCAS Google Scholar
Song, H. J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci.5, 438–445 (2002). ArticleCAS Google Scholar
Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature417, 39–44 (2002). ArticleCAS Google Scholar
McFarland, K. N., Wilkes, S. R., Koss, S. E., Ravichandran, K. S. & Mandell, J. W. Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J. Neurosci.26, 7885–7897 (2006). ArticleCAS Google Scholar
Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci.12, 1534–1541 (2009). ArticleCAS Google Scholar
Ziegenfuss, J. S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature453, 935–939 (2008). ArticleCAS Google Scholar
MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron50, 869–881 (2006). ArticleCAS Google Scholar
D’Arceuil, H. et al. 99mTc annexin V imaging of neonatal hypoxic brain injury. Stroke31, 2692–2700 (2000). Article Google Scholar
Zhang, X. et al. A minimally invasive, translational biomarker of ketamine-induced neuronal death in rats: microPET Imaging using 18F-annexin V. Toxicol. Sci.111, 355–361 (2009). ArticleCAS Google Scholar
Maeda, Y., Shiratsuchi, A., Namiki, M. & Nakanishi, Y. Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death Differ.9, 742–749 (2002). ArticleCAS Google Scholar
Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. & Landreth, G. E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci.29, 11982–11992 (2009). ArticleCAS Google Scholar
Koenigsknecht-Talboo, J. & Landreth, G. E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci.25, 8240–8249 (2005). ArticleCAS Google Scholar
Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci.24, 9838–9846 (2004). ArticleCAS Google Scholar
Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature450, 430–434 (2007). ArticleCAS Google Scholar
Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell107, 27–41 (2001). ArticleCAS Google Scholar
Elliott, M. R. et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature467, 333–337 (2010). ArticleCAS Google Scholar
Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell7, 483–495 (2010). ArticleCAS Google Scholar
Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci.17, 2042–2046 (2003). Article Google Scholar
Kempermann, G., Brandon, E. P. & Gage, F. H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr. Biol.8, 939–942 (1998). ArticleCAS Google Scholar
Lu, Z. & Kipnis, J. Thrombospondin 1—a key astrocyte-derived neurogenic factor. FASEB J.24, 1925–1934 (2010). ArticleCAS Google Scholar