Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity (original) (raw)

References

  1. Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res. 49, 1377–1387 (2008).
    Article CAS PubMed Google Scholar
  2. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  3. Cottrell, S. F., Getz, G. S. & Rabinowitz, M. Phospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 256, 10973–10978 (1981).
    CAS PubMed Google Scholar
  4. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).
    Article CAS PubMed Google Scholar
  5. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).
    Article CAS PubMed Google Scholar
  6. Whiteway, M. et al. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56, 467–477 (1989).
    Article CAS PubMed Google Scholar
  7. Wiget, P., Shimada, Y., Butty, A-C., Bi, E. & Peter, M. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J. 23, 1063–1074 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  8. Garrenton, L. S., Stefan, C. J., McMurray, M. A., Emr, S. D. & Thorner, J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl Acad. Sci. USA 107, 11805–11810 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  9. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).
    Article CAS PubMed Google Scholar
  10. Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861 (1993).
    Article CAS PubMed Google Scholar
  11. Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. & Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23–38 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  12. Vinnakota, K. C., Mitchell, D. A., Deschenes, R. J., Wakatsuki, T. & Beard, D. A. Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching. Phys. Biol. 7, 026011 (2010).
    Article PubMed PubMed Central Google Scholar
  13. Faty, M., Fink, M. & Barral, Y. Septins: a ring to part mother and daughter. Curr. Genet. 41, 123–131 (2002).
    Article CAS PubMed Google Scholar
  14. Sata, M., Donaldson, J. G., Moss, J. & Vaughan, M. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl Acad. Sci. USA 95, 4204–4208 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Achstetter, T., Franzusoff, A., Field, C. & Schekman, R. SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem. 263, 11711–11717 (1988).
    CAS PubMed Google Scholar
  16. Gurunathan, S., David, D. & Gerst, J. E. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J. 21, 602–614 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  17. Harsay, E. & Schekman, R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol. 156, 271–285 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  18. He, B. et al. Exo70p mediates the secretion of specific exocytic vesicles at early stages of the cell cycle for polarized cell growth. J. Cell Biol. 176, 771–777 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  19. Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173, 2026–2034 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  20. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci. 113 (Pt 4), 571–585 (2000).
    CAS PubMed Google Scholar
  21. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).
    Article CAS PubMed Google Scholar
  22. Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).
    Article CAS PubMed Google Scholar
  23. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).
    Article CAS PubMed Google Scholar
  24. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  25. Efe, J. A., Botelho, R. J. & Emr, S. D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell 18, 4232–4244 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  26. Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA 101, 10614–10619 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  27. Cross, F. R. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10, 6482–6490 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  28. Ziman, M. et al. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4, 1307–1316 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  29. Richman, T. J., Sawyer, M. M. & Johnson, D. I. Saccharomyces cerevisiae Cdc42p localizes to cellular membranes and clusters at sites of polarized growth. Eukaryot. Cell 1, 458–468 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  30. Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).
    Article CAS PubMed Google Scholar
  31. Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  32. Toenjes, K. A., Sawyer, M. M. & Johnson, D. I. The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites. Curr. Biol. 9, 1183–1186 (1999).
    Article CAS PubMed Google Scholar
  33. Riekhof, W. R. et al. Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem. 282, 36853–36861 (2007).
    Article CAS PubMed Google Scholar
  34. Trotter, P. J., Pedretti, J. & Voelker, D. R. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J. Biol. Chem. 268, 21416–21424 (1993).
    CAS PubMed Google Scholar
  35. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).
    Article CAS PubMed Google Scholar
  36. Kölsch, V., Charest, P. G. & Firtel, R. A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–559 (2008).
    Article PubMed Google Scholar
  37. Mitra, P. et al. A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166, 205–211 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  38. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
    CAS PubMed Google Scholar
  39. Hermansson, M., Uphoff, A., Käkelä, R. & Somerharju, P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem. 77, 2166–2175 (2005).
    Article CAS PubMed Google Scholar
  40. Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42, 663–672 (2001).
    PubMed Google Scholar
  41. Haimi, P., Uphoff, A., Hermansson, M. & Somerharju, P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem. 78, 8324–8331 (2006).
    Article CAS PubMed Google Scholar

Download references