Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity (original) (raw)
References
Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res.49, 1377–1387 (2008). ArticleCASPubMed Google Scholar
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol.9, 112–124 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cottrell, S. F., Getz, G. S. & Rabinowitz, M. Phospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae. J. Biol. Chem.256, 10973–10978 (1981). CASPubMed Google Scholar
Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science319, 210–213 (2008). ArticleCASPubMed Google Scholar
Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell125, 85–98 (2006). ArticleCASPubMed Google Scholar
Whiteway, M. et al. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell56, 467–477 (1989). ArticleCASPubMed Google Scholar
Wiget, P., Shimada, Y., Butty, A-C., Bi, E. & Peter, M. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J.23, 1063–1074 (2004). ArticleCASPubMedPubMed Central Google Scholar
Garrenton, L. S., Stefan, C. J., McMurray, M. A., Emr, S. D. & Thorner, J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl Acad. Sci. USA107, 11805–11810 (2010). ArticleCASPubMedPubMed Central Google Scholar
Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell21, 205–215 (1980). ArticleCASPubMed Google Scholar
Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell74, 855–861 (1993). ArticleCASPubMed Google Scholar
Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. & Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell11, 23–38 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vinnakota, K. C., Mitchell, D. A., Deschenes, R. J., Wakatsuki, T. & Beard, D. A. Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching. Phys. Biol.7, 026011 (2010). ArticlePubMedPubMed Central Google Scholar
Faty, M., Fink, M. & Barral, Y. Septins: a ring to part mother and daughter. Curr. Genet.41, 123–131 (2002). ArticleCASPubMed Google Scholar
Sata, M., Donaldson, J. G., Moss, J. & Vaughan, M. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl Acad. Sci. USA95, 4204–4208 (1998). ArticleCASPubMedPubMed Central Google Scholar
Achstetter, T., Franzusoff, A., Field, C. & Schekman, R. SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem.263, 11711–11717 (1988). CASPubMed Google Scholar
Gurunathan, S., David, D. & Gerst, J. E. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J.21, 602–614 (2002). ArticleCASPubMedPubMed Central Google Scholar
Harsay, E. & Schekman, R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol.156, 271–285 (2002). ArticleCASPubMedPubMed Central Google Scholar
He, B. et al. Exo70p mediates the secretion of specific exocytic vesicles at early stages of the cell cycle for polarized cell growth. J. Cell Biol.176, 771–777 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol.173, 2026–2034 (1991). ArticleCASPubMedPubMed Central Google Scholar
Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci.113 (Pt 4), 571–585 (2000). CASPubMed Google Scholar
Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell115, 475–487 (2003). ArticleCASPubMed Google Scholar
Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol.128, 779–792 (1995). ArticleCASPubMed Google Scholar
Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell2, 157–162 (1998). ArticleCASPubMed Google Scholar
Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol.162, 413–423 (2003). ArticleCASPubMedPubMed Central Google Scholar
Efe, J. A., Botelho, R. J. & Emr, S. D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell18, 4232–4244 (2007). ArticleCASPubMedPubMed Central Google Scholar
Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA101, 10614–10619 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cross, F. R. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol.10, 6482–6490 (1990). ArticleCASPubMedPubMed Central Google Scholar
Ziman, M. et al. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell4, 1307–1316 (1993). ArticleCASPubMedPubMed Central Google Scholar
Richman, T. J., Sawyer, M. M. & Johnson, D. I. Saccharomyces cerevisiae Cdc42p localizes to cellular membranes and clusters at sites of polarized growth. Eukaryot. Cell1, 458–468 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature356, 77–79 (1992). ArticleCASPubMed Google Scholar
Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 1295–1305 (1991). ArticleCASPubMedPubMed Central Google Scholar
Toenjes, K. A., Sawyer, M. M. & Johnson, D. I. The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites. Curr. Biol.9, 1183–1186 (1999). ArticleCASPubMed Google Scholar
Riekhof, W. R. et al. Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem.282, 36853–36861 (2007). ArticleCASPubMed Google Scholar
Trotter, P. J., Pedretti, J. & Voelker, D. R. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J. Biol. Chem.268, 21416–21424 (1993). CASPubMed Google Scholar
Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol.4, 513–518 (2002). ArticleCASPubMed Google Scholar
Kölsch, V., Charest, P. G. & Firtel, R. A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci.121, 551–559 (2008). ArticlePubMed Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem.226, 497–509 (1957). CASPubMed Google Scholar
Hermansson, M., Uphoff, A., Käkelä, R. & Somerharju, P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem.77, 2166–2175 (2005). ArticleCASPubMed Google Scholar
Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res.42, 663–672 (2001). PubMed Google Scholar
Haimi, P., Uphoff, A., Hermansson, M. & Somerharju, P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem.78, 8324–8331 (2006). ArticleCASPubMed Google Scholar