Goodwin, J. S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol.170, 261–272 (2005). ArticleCAS Google Scholar
Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell141, 458–471 (2010). ArticleCAS Google Scholar
Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science307, 1746–1752 (2005). ArticleCAS Google Scholar
Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol.6, 449–456 (2010). ArticleCAS Google Scholar
Camp, L. A. & Hofmann, S. L. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J. Biol. Chem.268, 22566–22574 (1993). CASPubMed Google Scholar
Sang, S. L. & Silvius, J. R. Novel thioester reagents afford efficient and specific S-acylation of unprotected peptides under mild conditions in aqueous solution. J. Pept. Res.66, 169–180 (2005). Article Google Scholar
Peyker, A., Rocks, O. & Bastiaens, P. I. Imaging activation of two Ras isoforms simultaneously in a single cell. ChemBioChem6, 78–85 (2005). ArticleCAS Google Scholar
Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A. & Hillig, R. C. The complex of Arl2-GTP and PDE δ: from structure to function. EMBO J.21, 2095–2106 (2002). ArticleCAS Google Scholar
Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The δ subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem.277, 15076–15084 (2002). ArticleCAS Google Scholar
Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene20, 7486–7493 (2001). ArticleCAS Google Scholar
Elad-Sfadia, G., Haklai, R., Balan, E. & Kloog, Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem.279, 34922–34930 (2004). ArticleCAS Google Scholar
Florio, S. K., Prusti, R. K. & Beavo, J. A. Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant δ subunit. J. Biol. Chem.271, 24036–24047 (1996). ArticleCAS Google Scholar
Marzesco, A. M., Galli, T., Louvard, D. & Zahraoui, A. The rod cGMP phosphodiesterase δ subunit dissociates the small GTPase Rab13 from membranes. J. Biol. Chem.273, 22340–22345 (1998). ArticleCAS Google Scholar
Zhang, H. et al. Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl Acad. Sci. USA104, 8857–8862 (2007). ArticleCAS Google Scholar
Wilson, S. J. & Smyth, E. M. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the δ subunit of cGMP phosphodiesterase 6. J. Biol. Chem.281, 11780–11786 (2006). ArticleCAS Google Scholar
Bhagatji, P., Leventis, R., Rich, R., Lin, C. J. & Silvius, J. R. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. Biophys. J.99, 3327–3335 (2010). ArticleCAS Google Scholar
Chen, Y. X. et al. Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem. Int. Ed.49, 6090–6095 (2010). ArticleCAS Google Scholar
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem.276, 29188–29194 (2001). ArticleCAS Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol.22, 1567–1572 (2004). ArticleCAS Google Scholar
Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell Biol.20, 2475–2487 (2000). ArticleCAS Google Scholar
Choy, E. et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell98, 69–80 (1999). ArticleCAS Google Scholar
Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques36, 276–285 (2004). ArticleCAS Google Scholar
Farrell, F. X., Yamamoto, K. & Lapetina, E. G. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem. J.289 (Pt 2), 349–355 (1993). Article Google Scholar
Winegar, D. A., Molina y Vedia, L. & Lapetina, E. G. Isoprenylation of rap2 proteins in platelets and human erythroleukemia cells. J. Biol. Chem.266, 4381–4386 (1991). CASPubMed Google Scholar
Gosser, Y. Q. et al. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature387, 814–819 (1997). ArticleCAS Google Scholar
Longenecker, K. et al. How RhoGDI binds Rho. Acta Crystallogr. D Biol. Crystallogr.55, 1503–1515 (1999). ArticleCAS Google Scholar
Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. Imaging biochemistry inside cells. Trends Cell Biol.11, 203–211 (2001). ArticleCAS Google Scholar
Zhang, H. et al. Photoreceptor cGMP phosphodiesterase δ subunit (PDEδ) functions as a prenyl-binding protein. J. Biol. Chem.279, 407–413 (2004). ArticleCAS Google Scholar
Webb, Y., Hermida-Matsumoto, L. & Resh, M. D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem.275, 261–270 (2000). ArticleCAS Google Scholar
Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science297, 1873–1877 (2002). ArticleCAS Google Scholar
Heo, W. D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science314, 1458–1461 (2006). ArticleCAS Google Scholar
Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science319, 210–213 (2008). ArticleCAS Google Scholar
Yeung, T. et al. Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation. J. Cell Biol.185, 917–928 (2009). ArticleCAS Google Scholar
Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science313, 347–351 (2006). ArticleCAS Google Scholar
Kim, J., Shishido, T., Jiang, X., Aderem, A. & McLaughlin, S. Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J. Biol. Chem.269, 28214–28219 (1994). CASPubMed Google Scholar
Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell21, 481–493 (2006). ArticleCAS Google Scholar
Lorentzen, A., Kinkhabwala, A., Rocks, O., Vartak, N. & Bastiaens, P. I. Regulation of Ras localization by acylation enables a mode of intracellular signal propagation. Sci. Signal3, ra68 (2010). Article Google Scholar
Richards, C. A., Short, S. A., Thorgeirsson, S. S. & Huber, B. E. Characterization of a transforming N-ras gene in the human hepatoma cell line Hep G2: additional evidence for the importance of c-myc and ras cooperation in hepatocarcinogenesis. Cancer Res.50, 1521–1527 (1990). CASPubMed Google Scholar
Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferationand widespread neoplastic and developmental defects. Cancer Cell5, 375–387 (2004). ArticleCAS Google Scholar
Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol.9, 493–505 (2007). ArticleCAS Google Scholar
Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell4, 437–450 (2003). ArticleCAS Google Scholar
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell7, 469–483 (2005). ArticleCAS Google Scholar
Skoulidis, F. et al. Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell18, 499–509 (2010). ArticleCAS Google Scholar
Gidekel Friedlander, S. Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell16, 379–389 (2009). Article Google Scholar
Singh, A. et al. A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell15, 489–500 (2009). ArticleCAS Google Scholar
Alexander, M. et al. Mapping the isoprenoid binding pocket of PDEδ by a semisynthetic, photoactivatable N-Ras lipoprotein. ChemBioChem10, 98–108 (2009). ArticleCAS Google Scholar
van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol.9, 112–124 (2008). ArticleCAS Google Scholar
Daleke, D. L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res.44, 233–242 (2003). ArticleCAS Google Scholar
Williamson, P. & Schlegel, R. A. Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol Membr. Biol.11, 199–216 (1994). ArticleCAS Google Scholar
Lorenz, B. et al. Cloning and gene structure of the rod cGMPphosphodiesterase δ subunit gene (PDED) in man and mouse. Eur. J. Hum. Genet.6, 283–290 (1998). ArticleCAS Google Scholar
Ismail, S. A. et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem. Biol.7, 942–949 (2011). ArticleCAS Google Scholar
Schreiber, F. S. et al. Successful growth and characterization of mouse pancreatic ductal cells: functional properties of the Ki-RAS(G12V) oncogene. Gastroenterology127, 250–260 (2004). ArticleCAS Google Scholar
Varga, M. et al. Pancreatic resection for metastatic renal cell carcinoma. Klin. Onkol.22, 288–290 (2009). CASPubMed Google Scholar
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45 (2001). ArticleCAS Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods25, 402–408 (2001). ArticleCAS Google Scholar
Politis, E. G., Roth, A. F. & Davis, N. G. Transmembrane topology of the protein palmitoyl transferase Akr1. J. Biol. Chem.280, 10156–10163 (2005). ArticleCAS Google Scholar
Lopez, A., Dupou, L., Altibelli, A., Trotard, J. & Tocanne, J. F. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Critical comparison of analytical solutions, and a new mathematical method for calculation of diffusion coefficient D. Biophys. J.53, 963–970 (1988). ArticleCAS Google Scholar
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J.16, 1055–1069 (1976). ArticleCAS Google Scholar
Elson, E. L. & Magde, D. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers13, 1–27 (1974). ArticleCAS Google Scholar
Grecco, H. E., Roda-Navarro, P. & Verveer, P. J. Global analysis of time correlated single photon counting FRET-FLIM data. Opt. Express17, 6493–6508 (2009). ArticleCAS Google Scholar