Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity (original) (raw)
Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic2, 149–159 (2001). CASPubMed Google Scholar
Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol.9, 846–859 (2008). CASPubMed Google Scholar
Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science298, 1955–1959 (2002). CASPubMed Google Scholar
Goldenring, J. R. et al. Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am. J. Physiol.270, G515–G525 (1996). CASPubMed Google Scholar
Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol.6, 233–247 (2005). CASPubMed Google Scholar
Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol.9, 833–845 (2008). CASPubMedPubMed Central Google Scholar
Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol.9, 887–901 (2008). CASPubMedPubMed Central Google Scholar
Suzuki, A. & Ohno, S. The PAR–aPKC system: lessons in polarity. J. Cell Sci.119, 979–987 (2006). ArticleCASPubMed Google Scholar
Munro, E. PAR proteins and the cytoskeleton: a marriage of equals. Curr. Opinion Cell Biol.18, 86–94 (2006). CASPubMed Google Scholar
Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development138, 799–809 (2011). CASPubMedPubMed Central Google Scholar
Achilleos, A., Wehman, A. M. & Nance, J. PAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization. Development137, 1833–1842 (2010). CASPubMedPubMed Central Google Scholar
Totong, R., Achilleos, A. & Nance, J. PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development134, 1259–1268 (2007). CASPubMed Google Scholar
Daley, W. P. et al. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity. Development139, 411–422 (2012). CASPubMedPubMed Central Google Scholar
Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature420, 629–635 (2002). CASPubMed Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol.2, 107–117 (2001). CASPubMed Google Scholar
Golachowska, M. R., Hoekstra, D. & van, I. S. C. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol.20, 618–626 (2010). CASPubMed Google Scholar
Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol.20, 445–452 (2010). CASPubMedPubMed Central Google Scholar
Prekeris, R., Klumperman, J. & Scheller, R. H. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell6, 1437–1448 (2000). CASPubMed Google Scholar
Swiatecka-Urban, A. et al. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J. Biol. Chem.282, 23725–23736 (2007). CASPubMed Google Scholar
Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell9, 355–376 (2005). Google Scholar
Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol.167, 531–543 (2004). CASPubMedPubMed Central Google Scholar
Wu, S., Mehta, S., Pichaud, F., Bellen, H. & Quiocho, F. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol.12, 879–885 (2005). CASPubMed Google Scholar
Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell17, 1286–1297 (2006). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol.13, 1189–1201 (2011). CASPubMedPubMed Central Google Scholar
Hermann, G. J. et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell16, 3273–3288 (2005). CASPubMedPubMed Central Google Scholar
Van Fürden, D., Johnson, K., Segbert, C. & Bossinger, O. The C. elegans ezrin–radixin–moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Developmental Biol.272, 262–276 (2004). Google Scholar
McGhee, J. D. The C. elegans intestine. WormBook 1–36 (2007).
Nehrke, K. A reduction in intestinal cell pHi due to loss of the _Caenorhabditis elegans_Na+/H+ exchanger NHX-2 increases life span. J. Biol. Chem.278, 44657–44666 (2003). CASPubMed Google Scholar
Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin–Darby canine kidney cells. Mol. Biol. Cell10, 47–61 (1999). CASPubMedPubMed Central Google Scholar
Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods30, 313–321 (2003). CASPubMed Google Scholar
Blum, H. Models for the Perception of Speech and Visual Forms 362–380 (MIT Press, 1967). Google Scholar
Thomas, P. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res.31, 334–341 (2003). CASPubMedPubMed Central Google Scholar
Johnson, S. C. Hierarchical clustering schemes. Psychometrika32, 241–254 (1967). CASPubMed Google Scholar
McGary, K. L., Lee, I. & Marcotte, E. M. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biol.8, R258 (2007). PubMedPubMed Central Google Scholar
Kardon, J. R. & Vale, R. D. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol.10, 854–865 (2009). CASPubMedPubMed Central Google Scholar
Horgan, C. P., Hanscom, S. R., Jolly, R. S., Futter, C. E. & McCaffrey, M. W. Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J. Cell Sci.123, 181–191 (2010). CASPubMed Google Scholar
Arimoto, M. et al. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci.31, 2216–2224 (2011). CASPubMedPubMed Central Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol.9, 1066–1073 (2007). CASPubMed Google Scholar
Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell81, 611–620 (1995). CASPubMed Google Scholar
Morton, D. et al. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev. Biol.241, 47–58 (2002). CASPubMed Google Scholar
Jin, J. et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol.14, 1436–1450 (2004). CASPubMed Google Scholar
Pozuelo Rubio, M. et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem. J.379, 395–408 (2004). PubMedPubMed Central Google Scholar
Angrand, P. O. et al. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol. Cell Proteomics5, 2211–2227 (2006). CASPubMed Google Scholar
Hurd, T. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol.13, 2082–2090 (2003). CASPubMed Google Scholar
Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell115, 691–704 (2003). CASPubMed Google Scholar
Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J.23, 4190–4201 (2004). CASPubMedPubMed Central Google Scholar
Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell125, 1165–1177 (2006). CASPubMed Google Scholar
Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature448, 366–369 (2007). CASPubMed Google Scholar
Gohla, A. & Bokoch, G. M. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol.12, 1704–1710 (2002). CASPubMed Google Scholar
Birkenfeld, J., Betz, H. & Roth, D. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3ζ. Biochem. J.369, 45–54 (2003). CASPubMedPubMed Central Google Scholar
Nagata-Ohashi, K. et al. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol.165, 465–471 (2004). PubMedPubMed Central Google Scholar
Ono, K., Parast, M., Alberico, C., Benian, G. & Ono, S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J. Cell Sci.116, 2073–2085 (2003). CASPubMed Google Scholar
Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol.6, 1173–1179 (2004). CASPubMed Google Scholar
Hüsken, K. et al. Maintenance of the intestinal tube in Caenorhabditis elegans: the role of the intermediate filament protein IFC-2. Differentiation76, 881–896 (2008). PubMed Google Scholar
Koppen, M. et al. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat. Cell Biol.3, 983–991 (2001). CASPubMed Google Scholar
Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol.20, 427–453 (2004). CASPubMed Google Scholar
Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genetics9, 554–566 (2008). CASPubMed Google Scholar
Provance, W. et al. Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol.9, 44 (2008). PubMedPubMed Central Google Scholar
Zenke, F. T. et al. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem.279, 18392–18400 (2004). CASPubMed Google Scholar
Meek, S. E., Lane, W. S. & Piwnica-Worms, H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J. Biol. Chem.279, 32046–32054 (2004). CASPubMed Google Scholar
Chen, X. & Macara, I. G. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J. Cell Biol.172, 671–678 (2006). CASPubMedPubMed Central Google Scholar
Kligys, K. et al. The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J. Biol. Chem.282, 32520–32528 (2007). CASPubMed Google Scholar
Rollason, R., Korolchuk, V., Hamilton, C., Jepson, M. & Banting, G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J. Cell Biol.184, 721–736 (2009). CASPubMedPubMed Central Google Scholar
Torkko, J. M., Manninen, A., Schuck, S. & Simons, K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J. Cell Sci.121, 1193–1203 (2008). CASPubMed Google Scholar
Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol.295, C545–C556 (2008). CASPubMed Google Scholar
Cao, J., Albertson, R., Riggs, B., Field, C. M. & Sullivan, W. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J. Cell Biol.182, 301–313 (2008). CASPubMedPubMed Central Google Scholar
Rodal, A. A., Motola-Barnes, R. N. & Littleton, J. T. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth. J. Neurosci.28, 8316–8325 (2008). CASPubMedPubMed Central Google Scholar
Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics157, 1217–1226 (2001). CASPubMedPubMed Central Google Scholar
Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol.1, E12 (2003). PubMedPubMed Central Google Scholar
Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E.H. & Rapoport, T. A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell13, 1778–1791 (2002). CASPubMedPubMed Central Google Scholar
Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell17, 1286–1297 (2006). CASPubMedPubMed Central Google Scholar
Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell125, 1165–1177 (2006). CASPubMed Google Scholar
Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature448, 366–369 (2007). CASPubMed Google Scholar
Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene263, 103–112 (2001). CASPubMed Google Scholar
Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods30, 313–321 (2003). CASPubMed Google Scholar
Gillingham, A. K., Pfeifer, A. C. & Munro, S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol. Biol. Cell13, 3761–3774 (2002). CASPubMedPubMed Central Google Scholar
Van Fürden, D., Johnson, K., Segbert, C. & Bossinger, O. The C. elegans ezrin–radixin–moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev. Biol.272, 262–276 (2004). PubMed Google Scholar
Poteryaev, D., Fares, H., Bowerman, B. & Spang, A. Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J.26, 301–312 (2007). CASPubMedPubMed Central Google Scholar
Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). CASPubMedPubMed Central Google Scholar
Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol.6, 1173 (2004). CASPubMed Google Scholar
Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol.20, 1296–1303 (2010). CASPubMed Google Scholar
Schonegg, S. & Hyman, A. A. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development133, 3507–3516 (2006). CASPubMed Google Scholar
Aono, S., Legouis, R., Hoose, W. & Kemphues, K. PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development131, 2865–2874 (2004). CASPubMed Google Scholar