Tissue damage detection by osmotic surveillance (original) (raw)

References

  1. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).
    Article CAS PubMed Google Scholar
  2. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006).
    Article CAS PubMed Google Scholar
  3. Gilljam, H., Ellin, A. & Strandvik, B. Increased bronchial chloride concentration in cystic fibrosis. Scand. J. Clin. Lab Invest. 49, 121–124 (1989).
    Article CAS PubMed Google Scholar
  4. Joris, L., Dab, I. & Quinton, P. M. Elemental composition of human airway surface fluid in healthy and diseased airways. Am. Rev. Respir. Dis. 148, 1633–1637 (1993).
    Article CAS PubMed Google Scholar
  5. Redd, M. J., Cooper, L., Wood, W., Stramer, B. & Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Phil. Trans. R. Soc. Lond. Ser. B 359, 777–784 (2004).
    Article CAS Google Scholar
  6. Huttenlocher, A. & Poznansky, M. C. Reverse leukocyte migration can be attractive or repulsive. Trends Cell Biol. 18, 298–306 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  7. Renshaw, S. A. & Trede, N. S. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis. Models Mech. 5, 38–47 (2012).
    Article CAS Google Scholar
  8. Lieschke, G. J. & Trede, N. S. Fish immunology. Curr. Biol. 19, R678–R682 (2009).
    Article CAS PubMed Google Scholar
  9. Alberts, B. et al. in Molecular Biology of the Cell 4th edn (ed. Redd, M. J.) (Garland Science, 2002).
    Google Scholar
  10. Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006).
    Article CAS PubMed Google Scholar
  11. Van’t Hoff, J. H. The role of osmotic pressure in the analogy between solutions and gases. J. Membr. Sci. 100, 39–44 (1995).
    Article Google Scholar
  12. Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Phys. Rev. 89, 193–277 (2009).
    CAS Google Scholar
  13. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  14. Yoo, S. K., Starnes, T. W., Deng, Q. & Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  15. Moreira, S., Stramer, B., Evans, I., Wood, W. & Martin, P. Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr. Biol. 20, 464–470 (2010).
    Article CAS PubMed Google Scholar
  16. Feng, Y., Santoriello, C., Mione, M., Hurlstone, A. & Martin, P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 8, e1000562 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  17. Burke, J. E. & Dennis, E. A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid Res. 50 (suppl.), S237–S242 (2009).
    Article PubMed PubMed Central Google Scholar
  18. Glover, S. et al. Translocation of the 85-kDa phospholipase A2 from cytosol to the nuclear envelope in rat basophilic leukemia cells stimulated with calcium ionophore or IgE/antigen. J. Biol. Chem. 270, 15359–15367 (1995).
    Article CAS PubMed Google Scholar
  19. Peters-Golden, M., Song, K., Marshall, T. & Brock, T. Translocation of cytosolic phospholipase A2 to the nuclear envelope elicits topographically localized phospholipid hydrolysis. Biochem. J. 318, 797–803 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  20. Sierra-Honigmann, M. R., Bradley, J. R. & Pober, J. S. ‘Cytosolic’ phospholipase A2 is in the nucleus of subconfluent endothelial cells but confined to the cytoplasm of confluent endothelial cells and redistributes to the nuclear envelope and cell junctions upon histamine stimulation. Lab. Invest. 74, 684–695 (1996).
    CAS PubMed Google Scholar
  21. Grewal, S., Morrison, E. E., Ponnambalam, S. & Walker, J. H. Nuclear localisation of cytosolic phospholipase A2-alpha in the EA.hy.926 human endothelial cell line is proliferation dependent and modulated by phosphorylation. J. Cell Sci. 115, 4533–4543 (2002).
    Article CAS PubMed Google Scholar
  22. O’Brien, G. S. et al. Coordinate development of skin cells and cutaneous sensory axons in zebrafish. J. Comp. Neurol. 520, 816–831 (2012).
    Article PubMed PubMed Central Google Scholar
  23. Mateus, R. et al. In vivo cell and tissue dynamics underlying zebrafish fin fold regeneration. PLoS One 7, e51766 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  24. Thoroed, S. M., Lauritzen, L., Lambert, I. H., Hansen, H. S. & Hoffmann, E. K. Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J. Membr. Biol. 160, 47–58 (1997).
    Article CAS PubMed Google Scholar
  25. Basavappa, S., Pedersen, S. F., Jorgensen, N. K., Ellory, J. C. & Hoffmann, E. K. Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J. Neurophysiol. 79, 1441–1449 (1998).
    Article CAS PubMed Google Scholar
  26. Pedersen, S., Lambert, I. H., Thoroed, S. M. & Hoffmann, E. K. Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the γ isoform in Ehrlich ascites tumor cells. Eur. J. Biochem. 267, 5531–5539 (2000).
    Article CAS PubMed Google Scholar
  27. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004).
    Article CAS PubMed Google Scholar
  28. Hua, S. Z., Gottlieb, P. A., Heo, J. & Sachs, F. A mechanosensitive ion channel regulating cell volume. Am. J. Physiol. Cell Physiol. 298, C1424–C1430 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  29. Razzell, W., Evans, I.R., Martin, P. & Wood, W. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424–429 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  30. Sieger, D., Moritz, C., Ziegenhals, T., Prykhozhij, S. & Peri, F. Long-range Ca2+ waves transmit brain-damage signals to microglia. Dev. Cell 22, 1138–1148 (2012).
    Article CAS PubMed Google Scholar
  31. Kowal-Bielecka, O. et al. Evidence of 5-lipoxygenase overexpression in the skin of patients with systemic sclerosis: a newly identified pathway to skin inflammation in systemic sclerosis. Arthritis Rheum. 44, 1865–1875 (2001).
    Article CAS PubMed Google Scholar
  32. Luo, M., Lee, S. & Brock, T. G. Leukotriene synthesis by epithelial cells. Hist. Histopathol. 18, 587–595 (2003).
    CAS Google Scholar
  33. Cannon, J. E. et al. Global analysis of the haematopoietic and endothelial transcriptome during zebrafish development. Mech. Dev. 130, 122–131 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  34. Grant, G. E., Rokach, J. & Powell, W. S. 5-Oxo-ETE and the OXE receptor. Prostaglandins 89, 98–104 (2009).
    Article CAS Google Scholar
  35. Powell, W. S., Chung, D. & Gravel, S. 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J. Immunol. 154, 4123–4132 (1995).
    CAS PubMed Google Scholar
  36. Klyubin, I. V., Kirpichnikova, K. M. & Gamaley, I. A. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils. Eur. J. Cell Biol. 70, 347–351 (1996).
    CAS PubMed Google Scholar
  37. Kuiper, J. W., Sun, C., Magalhaes, M. A. & Glogauer, M. Rac regulates PtdInsP(3) signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 118, 6164–6171 (2011).
    Article CAS PubMed Google Scholar
  38. Valverde, M. A. et al. Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc. Natl Acad. Sci. USA 92, 9038–9041 (1995).
    Article CAS PubMed Google Scholar
  39. Jennings, R. B. & Reimer, K. A. The cell biology of acute myocardial ischemia. Annu. Rev. Med. 42, 225–246 (1991).
    Article CAS PubMed Google Scholar
  40. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998).
    Article CAS PubMed Google Scholar
  41. White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  42. Nüsslein-Volhard, C. & Dahm, R. Zebrafish: A Practical Approach (Oxford Univ. Press, 2002).
    Google Scholar
  43. Zhao, Y. et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333, 1888–1891 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  44. Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).
    Article CAS PubMed Google Scholar
  45. Hall, C., Flores, M. V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42 (2007).
    Article PubMed PubMed Central Google Scholar
  46. Pauls, S., Geldmacher-Voss, B. & Campos-Ortega, J. A. A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev. Genes Evol. 211, 603–610 (2001).
    Article CAS PubMed Google Scholar
  47. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    Article CAS Google Scholar
  48. Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  49. Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Gen. 3, e78 (2007).
    Article Google Scholar
  50. Bertrand, J. Y. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156 (2007).
    Article CAS PubMed PubMed Central Google Scholar

Download references