A cost–benefit analysis of the physical mechanisms of membrane curvature (original) (raw)
McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438, 590–596 (2005). CASPubMed Google Scholar
Bigay, J. & Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell23, 886–895 (2012). CASPubMed Google Scholar
Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol.7, 9–19 (2006). CASPubMed Google Scholar
Canham, P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol.26, 61–81 (1970). CAS Google Scholar
Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Biochem. Biophys. Biol. Virol.28, 693–703 (1973). CAS Google Scholar
Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol.11, 1039–1042 (2009). CASPubMed Google Scholar
Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol.13, 1124–1131 (2011). CASPubMedPubMed Central Google Scholar
Svetina, S. & Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J.17, 101–111 (1989). CASPubMed Google Scholar
Fuller, N. & Rand, R. P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J.81, 243–254 (2001). CASPubMedPubMed Central Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). CASPubMed Google Scholar
Fujita, M. & Kinoshita, T. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim. Biophys. Acta1821, 1050–1058 (2012). CASPubMed Google Scholar
Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA71, 4457–4461 (1974). CASPubMedPubMed Central Google Scholar
Decher, G. et al. Interaction of amphiphilic polymers with model membranes. Angew. Makromol. Chem.166, 71–80 (1989). Google Scholar
Stachowiak, J. C., Hayden, C. C. & Sasaki, D. Y. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl Acad. Sci. USA107, 7781–7786 (2010). CASPubMedPubMed Central Google Scholar
Copic, A., Latham, C. F., Horlbeck, M. A., D'Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science335, 1359–1362 (2012). CASPubMedPubMed Central Google Scholar
Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell142, 158–169 (2010). CASPubMedPubMed Central Google Scholar
Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J. Cell Biol.20, 313–332 (1964). CASPubMedPubMed Central Google Scholar
Pearse, B. M. & Crowther, R. A. Structure and assembly of coated vesicles. Annu. Rev. Biophys. Biophys. Chem.16, 49–68 (1987). CASPubMed Google Scholar
Thomas, P. D. & Poznansky, M. J. Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Biochim. Biophys. Acta978, 85–90 (1989). CASPubMed Google Scholar
Goni, F. M. & Alonso, A. Biophysics of sphingolipids, I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim. Biophys. Acta1758, 1902–1921 (2006). CASPubMed Google Scholar
Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell141, 656–667 (2010). CASPubMedPubMed Central Google Scholar
Yang, J. S. et al. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat. Cell Biol.10, 1146–1153 (2008). CASPubMedPubMed Central Google Scholar
Gall, W. E. et al. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol.12, 1623–1627 (2002). CASPubMed Google Scholar
Leibler, S. Curvature instability in membranes. J. Phys.47, 507–516 (1986). CAS Google Scholar
Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature419, 361–366 (2002). CASPubMed Google Scholar
Lee, M. C. S. et al. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell122, 605–617 (2005). CASPubMed Google Scholar
Lundmark, R., Doherty, G. J., Vallis, Y., Peter, B. J. & McMahon, H. T. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J.414, 189–194 (2008). CASPubMed Google Scholar
Krauss, M. et al. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J. Biol. Chem.283, 27717–27723 (2008). CASPubMedPubMed Central Google Scholar
Campelo, F., McMahon, H. T. & Kozlov, M. M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J.95, 2325–2339 (2008). CASPubMedPubMed Central Google Scholar
Stachowiak, J. C. et al. Membrane bending by protein-protein crowding. Nat. Cell Biol.14, 944–949 (2012). CASPubMed Google Scholar
Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol.14, 634–639 (2012). CASPubMed Google Scholar
Settles, E. I., Loftus, A. F., McKeown, A. N. & Parthasarathy, R. The vesicle trafficking protein Sar1 lowers lipid membrane rigidity. Biophys. J.99, 1539–1545 (2010). CASPubMedPubMed Central Google Scholar
Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature426, 563–566 (2003). CASPubMed Google Scholar
Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M. A., Arzi, T. & Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett.91, 138102 (2003). PubMed Google Scholar
Lipowsky, R. Bending of membranes by anchored polymers. Europhys. Lett.30, 197–202 (1995). CAS Google Scholar
Kim, Y. W. & Sung, W. Y. Membrane curvature induced by polymer adsorption. Phys. Rev. E63, 041910 (2001). CAS Google Scholar
Imjeti, N. S. et al. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol. Biol. Cell22, 4621–4634 (2011). CASPubMedPubMed Central Google Scholar
Tooze, S. A., Martens, G. J. & Huttner, W. B. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol.11, 116–122 (2001). CASPubMed Google Scholar
Vennema, H. et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J.15, 2020–2028 (1996). CASPubMedPubMed Central Google Scholar
Wang, C. W., Hamamoto, S., Orci, L. & Schekman, R. Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J. Cell Biol.174, 973–983 (2006). CASPubMedPubMed Central Google Scholar
Shibata, Y. et al. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem.283, 18892–18904 (2008). CASPubMedPubMed Central Google Scholar
Walser, P. J. et al. Constitutive formation of caveolae in a bacterium. Cell150, 752–763 (2012). CASPubMed Google Scholar
Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science319, 1247–1250 (2008). CASPubMed Google Scholar
Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature439, 234–238 (2006). CASPubMed Google Scholar
Faini, M. et al. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science336, 1451–1454 (2012). CASPubMed Google Scholar
Darsow, T., Katzmann, D. J., Cowles, C. R. & Emr, S. D. Vps41p function in the alkaline phosphatase pathway requires homo-oligomerization and interaction with AP-3 through two distinct domains. Mol. Biol. Cell12, 37–51 (2001). CASPubMedPubMed Central Google Scholar
Bielli, A. et al. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol.171, 919–924 (2005). CASPubMedPubMed Central Google Scholar
Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol.28, 309–336 (2012). CASPubMed Google Scholar
Wakeham, D. E., Chen, C. Y., Greene, B., Hwang, P. K. & Brodsky, F. M. Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation. EMBO J.22, 4980–4990 (2003). CASPubMedPubMed Central Google Scholar
Den Otter, W. K. & Briels, W. J. The generation of curved clathrin coats from flat plaques. Traffic12, 1407–1416 (2011). CASPubMed Google Scholar
Nossal, R. Energetics of clathrin basket assembly. Traffic2, 138–147 (2001). CASPubMed Google Scholar
Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol.3, 531–537 (2001). CASPubMed Google Scholar
Townley, A. K. et al. Efficient coupling of Sec23–Sec24 to Sec13–Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci.121, 3025–3034 (2008). CASPubMed Google Scholar
Malhotra, V. & Erlmann, P. Protein export at the ER: loading big collagens into COPII carriers. EMBO J.30, 3475–3480 (2011). CASPubMedPubMed Central Google Scholar
Huang, F. & Sorkin, A. Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Mol. Biol. Cell16, 1268–1281 (2005). CASPubMedPubMed Central Google Scholar
Ferreira, F. et al. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation. Curr. Biol.22, 1361–1370 (2012). CASPubMed Google Scholar
Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. G. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell150, 508–520 (2012). CASPubMed Google Scholar
Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol.21, 1167–1175 (2011). CASPubMedPubMed Central Google Scholar
Idrissi, F. Z., Blasco, A., Espinal, A. & Geli, M. I. Ultrastructural dynamics of proteins involved in endocytic budding. Proc. Natl Acad. Sci. USA109, E2587–2594 (2012). CASPubMedPubMed Central Google Scholar
Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic1, 161–171 (2000). CASPubMed Google Scholar
Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol.7, e1000191 (2009). PubMedPubMed Central Google Scholar
Bonazzi, M. et al. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol.195, 525–536 (2011). CASPubMedPubMed Central Google Scholar
Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog.6, e1001127 (2010). PubMedPubMed Central Google Scholar
Hansen, C. G. & Nichols, B. J. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol.20, 177–186 (2010). CASPubMed Google Scholar
Karpova, T. S. et al. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol. Biol. Cell11, 1727–1737 (2000). CASPubMedPubMed Central Google Scholar
Zech, T., Calaminus, S. D. & Machesky, L. M. Actin on trafficking: Could actin guide directed receptor transport? Cell Adh. Migr.6, 476–481 (2012). PubMedPubMed Central Google Scholar
Campelo, F. & Malhotra, V. Membrane fission: the biogenesis of transport carriers. Annu. Rev. Biochem.81, 407–427 (2012). CASPubMed Google Scholar
Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol.13, 75–88 (2012). CASPubMedPubMed Central Google Scholar
Schmid, S. L. & Frolov, V. A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol.27, 79–105 (2011). CASPubMed Google Scholar
Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell149, 124–136 (2012). CASPubMedPubMed Central Google Scholar
Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J.79, 328–339 (2000). CASPubMedPubMed Central Google Scholar
Evans, E. & Rawicz, W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett.64, 2094–2097 (1990). CASPubMed Google Scholar
Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol.9, 112–124 (2008). CASPubMedPubMed Central Google Scholar
Hochmuth, F. M., Shao, J. Y., Dai, J. & Sheetz, M. P. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys. J.70, 358–369 (1996). CASPubMedPubMed Central Google Scholar
Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA103, 10277–10282 (2006). CASPubMedPubMed Central Google Scholar
Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci.6, 127–135 (2003). CASPubMed Google Scholar
Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell150, 495–507 (2012). CASPubMedPubMed Central Google Scholar
Mehlert, A., Wormald, M. R. & Ferguson, M. A. Modeling of the N-glycosylated transferrin receptor suggests how transferrin binding can occur within the surface coat of Trypanosoma brucei. PLoS Pathog.8, e1002618 (2012). CASPubMedPubMed Central Google Scholar
Zhang, F., Zang, T., Wilson, S. J., Johnson, M. C. & Bieniasz, P. D. Clathrin facilitates the morphogenesis of retrovirus particles. PLoS Pathog.7, e1002119 (2011). CASPubMedPubMed Central Google Scholar
Johnson, D. C. & Baines, J. D. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol.9, 382–394 (2011). CASPubMed Google Scholar
Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature432, 573–579 (2004). CASPubMed Google Scholar
Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature449, 1063–1067 (2007). CASPubMedPubMed Central Google Scholar
Tanaka-Takiguchi, Y., Kinoshita, M. & Takiguchi, K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol.19, 140–145 (2009). CASPubMed Google Scholar
Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol.15, 213–226 (2013). CASPubMed Google Scholar
Carnahan, N. F. & Starling, K. E. Equation of state for nonattracting rigid spheres. J. Chem. Phys.51, 635 (1969). CAS Google Scholar
Song, Y. H., Mason, E. A. & Stratt, R. M. Why does the Carnahan-Starling equation work so well. J. Phys Chem93, 6916–6919 (1989). CAS Google Scholar
Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric pressure between membrane-bound proteins opposes lipid phase separation. J. Am. Chem. Soc.135, 1185–1188 (2013). CASPubMed Google Scholar
Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA101, 3833–3838 (2004). CASPubMedPubMed Central Google Scholar