Zhao, B., Li, L., Lei, Q. & Guan, K. L. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev.24, 862–874 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF_β_−TRCP. Genes Dev.24, 72–85 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell25, 166–180 (2014). ArticleCASPubMed Google Scholar
Zhang, W. et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res.24, 331–343 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA107, 1437–1442 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev.24, 2383–2388 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. P. et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 8248–8253 (2010). ArticleCASPubMedPubMed Central Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007). ArticleCASPubMed Google Scholar
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev.21, 2747–2761 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev.26, 54–68 (2012). ArticlePubMedPubMed Central Google Scholar
Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol.13, 591–600 (2012). ArticleCASPubMed Google Scholar
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer11, 85–95 (2011). ArticleCASPubMed Google Scholar
Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science331, 456–461 (2011). ArticleCASPubMed Google Scholar
Crute, B. E., Seefeld, K., Gamble, J., Kemp, B. E. & Witters, L. A. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem.273, 35347–35354 (1998). ArticleCASPubMed Google Scholar
Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem.283, 5496–5509 (2008). ArticleCASPubMed Google Scholar
Fujishiro, S. H. et al. ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem. Biophys. Res. Commun.368, 162–167 (2008). ArticleCASPubMed Google Scholar
Wu, S. Z. et al. Akt and RhoA activation in response to high glucose require caveolin-1 phosphorylation in mesangial cells. Am. J. Physiol. Renal Physiol.306, F1308–F1317 (2014). ArticleCASPubMed Google Scholar
Zhang, Y., Peng, F., Gao, B., Ingram, A. J. & Krepinsky, J. C. High glucose-induced RhoA activation requires caveolae and PKCbeta1-mediated ROS generation. Am. J. Physiol. Renal Physiol.302, F159–F172 (2012). ArticleCASPubMed Google Scholar
Stubbs, M., McSheehy, P. M., Griffiths, J. R. & Bashford, C. L. Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today6, 15–19 (2000). ArticleCASPubMed Google Scholar
Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl Acad. Sci. USA108, 2270–2275 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, T. et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys. Res. Commun.170, 223–230 (1990). ArticleCASPubMed Google Scholar
Mellanen, P., Minn, H., Grenman, R. & Harkonen, P. Expression of glucose transporters in head-and-neck tumors. Int. J. Cancer56, 622–629 (1994). ArticleCASPubMed Google Scholar
Boado, R. J., Black, K. L. & Pardridge, W. M. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res. Mol. Brain Res.27, 51–57 (1994). ArticleCASPubMed Google Scholar
Younes, M., Brown, R. W., Stephenson, M., Gondo, M. & Cagle, P. T. Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer80, 1046–1051 (1997). ArticleCASPubMed Google Scholar
Ha, T. K. & Chi, S. G. CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy8, 1684–1685 (2012). ArticleCASPubMedPubMed Central Google Scholar
DeRan, M. et al. Energy stress regulates Hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep.9, 495–503 (2014). ArticleCASPubMedPubMed Central Google Scholar
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem.68, 850–858 (1996). ArticleCASPubMed Google Scholar
Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom.36, 1083–1091 (2001). ArticleCASPubMed Google Scholar
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994). ArticleCASPubMed Google Scholar
Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol.24, 1285–1292 (2006). ArticleCASPubMed Google Scholar