Transduction of mechanical and cytoskeletal cues by YAP and TAZ (original) (raw)
Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol.10, 63–73 (2009). CAS Google Scholar
Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol.10, 34–43 (2009). CAS Google Scholar
Mammoto, A. & Ingber, D. E. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol.21, 864–870 (2009). CASPubMed Google Scholar
Provenzano, P. P. & Keely, P. J. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J. Cell. Sci.124, 1195–1205 (2011). CASPubMedPubMed Central Google Scholar
Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer9, 108–122 (2009). CASPubMed Google Scholar
Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nature Rev. Mol. Cell Biol.10, 53–62 (2009). CAS Google Scholar
Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science324, 1673–1677 (2009). CASPubMedPubMed Central Google Scholar
Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature474, 179–183 (2011). CASPubMed Google Scholar
Wada, K.-I., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development138, 3907–3914 (2011). CASPubMed Google Scholar
Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J.30, 2325–2335 (2011). CASPubMedPubMed Central Google Scholar
Fernández, B. G. et al. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development138, 2337–2346 (2011). PubMed Google Scholar
Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev.26, 54–68 (2012). PubMedPubMed Central Google Scholar
Zhao, B., Li, L., Lei, Q. & Guan, K.-L. The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev.24, 862–874 (2010). CASPubMedPubMed Central Google Scholar
Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell147, 759–772 (2011). CASPubMed Google Scholar
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell16, 398–410 (2009). CASPubMed Google Scholar
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev. Mol. Cell. Biol.11, 633–643 (2010). CAS Google Scholar
Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol.7, 265–275 (2006). CAS Google Scholar
Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell. Sci.124, 9–18 (2011). CASPubMed Google Scholar
Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol.2, a005066 (2010). CASPubMedPubMed Central Google Scholar
Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature273, 345–349 (1978). CASPubMed Google Scholar
Spiegelman, B. M. & Ginty, C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell35, 657–666 (1983). CASPubMed Google Scholar
Singhvi, R. et al. Engineering cell shape and function. Science264, 696–698 (1994). CASPubMed Google Scholar
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science276, 1425–1428 (1997). CASPubMed Google Scholar
Watt, F. M., Jordan, P. W. & O'Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA85, 5576–5580 (1988). CASPubMedPubMed Central Google Scholar
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6, 483–495 (2004). CASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). CASPubMed Google Scholar
Engler, A. J. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol.166, 877–887 (2004). CASPubMedPubMed Central Google Scholar
Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science329, 1078–1081 (2010). CASPubMedPubMed Central Google Scholar
Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK–ERK linkage. Oncogene28, 4326–4343 (2009). CASPubMedPubMed Central Google Scholar
Klein, E. A. et al. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol.19, 1511–1518 (2009). CASPubMedPubMed Central Google Scholar
Keely, P. J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J. Mammary Gland Biol. Neoplasia16, 205–219 (2011). PubMed Google Scholar
Celeste, M. Nelson, M. J. B. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol.22, 287–309 (2006). Google Scholar
Weigelt, B. & Bissell, M. J. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin. Cancer Biol.18, 311–321 (2008). CASPubMedPubMed Central Google Scholar
Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell111, 29–40 (2002). CASPubMed Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). CASPubMed Google Scholar
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell139, 891–906 (2009). CASPubMedPubMed Central Google Scholar
Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA102, 11594–11599 (2005). CASPubMedPubMed Central Google Scholar
Ruiz, S. A. & Chen, C. S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells26, 2921–2927 (2008). PubMedPubMed Central Google Scholar
Liu, W. F., Nelson, C. M., Pirone, D. M. & Chen, C. S. E-cadherin engagement stimulates proliferation via Rac1. J. Cell Biol.173, 431–441 (2006). CASPubMedPubMed Central Google Scholar
Yonemura, S. Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-catenin as a tension transducer that induces adherens junction development. Nature Cell Biol.12, 533–542 (2010). CASPubMed Google Scholar
Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. & Waterman, C. M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol.26, 315–333 (2010). CASPubMedPubMed Central Google Scholar
Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J.89, L52–L54 (2005). CASPubMedPubMed Central Google Scholar
Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater.11, 642–649 (2012). CAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater.9, 518–526 (2010). CAS Google Scholar
Olson, E. N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nature Rev. Mol. Cell Biol.11, 353–365 (2010). CAS Google Scholar
Miralles, F., Posern, G., Zaromytidou, A.-I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell113, 329–342 (2003). CASPubMed Google Scholar
Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol.12, 711–718 (2010). CASPubMed Google Scholar
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev.21, 2747–2761 (2007). CASPubMedPubMed Central Google Scholar
Ganz, A. et al. Traction forces exerted through N-cadherin contacts. Biol. Cell98, 721–730 (2012). Google Scholar
Grusche, F. A., Richardson, H. E. & Harvey, K. F. Upstream regulation of the Hippo size control pathway. Curr. Biol.20, R574–R582 (2010). CASPubMed Google Scholar
Genevet, A. & Tapon, N. The Hippo pathway and apico-basal cell polarity. Biochem. J.436, 213–224 (2011). CASPubMed Google Scholar
Zhao, B., Tumaneng, K. & Guan, K.-L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biol.13, 877–883 (2011). CASPubMed Google Scholar
Ota, M. & Sasaki, H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development135, 4059–4069 (2008). CASPubMed Google Scholar
Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell16, 425–438 (2009). CASPubMedPubMed Central Google Scholar
Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell144, 782–795 (2011). CASPubMedPubMed Central Google Scholar
Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal.4, ra33 (2011). PubMedPubMed Central Google Scholar
Puliafito, A. et al. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl Acad. Sci. USA109, 739–744 (2012). CASPubMedPubMed Central Google Scholar
Kim, J.-H. & Asthagiri, A. R. Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J. Cell. Sci.124, 1280–1287 (2011). CASPubMedPubMed Central Google Scholar
Piwko-Czuchra, A. et al. β1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion. PLoS ONE4, e5488 (2009). PubMedPubMed Central Google Scholar
Rice, R. H. & Green, H. Relation of protein synthesis and transglutaminase activity to formation of the cross-linked envelope during terminal differentiation of the cultured human epidermal keratinocyte. J. Cell Biol.76, 705–711 (1978). CASPubMedPubMed Central Google Scholar
Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCK kinases. Genes Dev.21, 562–577 (2007). CASPubMedPubMed Central Google Scholar
Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell19, 776–791 (2011). CASPubMedPubMed Central Google Scholar
Watt, F. M. & Fujiwara, H. Cell–extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol.3, a005124 (2011). PubMedPubMed Central Google Scholar
Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl Acad. Sci. USA108, 2270–2275 (2011). CASPubMedPubMed Central Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007). CASPubMed Google Scholar
Haynie, J. L. & Bryant, P. J. Intercalary regeneration in imaginal wing disk of Drosophila melanogaster. Nature259, 659–662 (1976). CASPubMed Google Scholar
Schwank, G. & Basler, K. Regulation of organ growth by morphogen gradients. Cold Spring Harb. Perspect. Biol.2, a001669 (2010). PubMedPubMed Central Google Scholar
Aegerter-Wilmsen, T., Aegerter, C. M., Hafen, E. & Basler, K. Model for the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev.124, 318–326 (2007). CASPubMed Google Scholar
Nienhaus, U., Aegerter-Wilmsen, T. & Aegerter, C. M. Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mech. Dev.126, 942–949 (2009). CASPubMed Google Scholar
Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA104, 3835–3840 (2007). CASPubMedPubMed Central Google Scholar
Egeblad, M., Rasch, M. G. & Weaver, V. M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol.22, 697–706 (2010). CASPubMedPubMed Central Google Scholar
Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature440, 1222–1226 (2006). CASPubMed Google Scholar
Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol.137, 231–245 (1997). CASPubMedPubMed Central Google Scholar
Lei, Q.-Y. et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell. Biol.28, 2426–2436 (2008). CASPubMedPubMed Central Google Scholar
Bhat, K. P. L. et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev.25, 2594–2609 (2011). CASPubMedPubMed Central Google Scholar
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biol.10, 837–848 (2008). CASPubMed Google Scholar
Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell19, 831–844 (2010). CASPubMed Google Scholar
Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell18, 579–591 (2010). CASPubMed Google Scholar
Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science332, 458–461 (2011). CASPubMedPubMed Central Google Scholar
Oh, H. & Irvine, K. D. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev. Cell20, 109–122 (2011). CASPubMedPubMed Central Google Scholar
Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell114, 457–467 (2003). CASPubMed Google Scholar
Wu, S. Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell114, 445–456 (2003). CASPubMed Google Scholar
Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol.5, 914–920 (2003). CASPubMed Google Scholar
Pantalacci, S., Tapon, N. & Léopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol.5, 921–927 (2003). CASPubMed Google Scholar
Tapon, N. et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell110, 467–478 (2002). CASPubMed Google Scholar
Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development129, 5719–5730 (2002). CASPubMed Google Scholar
Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev.9, 534–546 (1995). CASPubMed Google Scholar
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development121, 1053–1063 (1995). CASPubMed Google Scholar
Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell130, 1120–1133 (2007). CASPubMedPubMed Central Google Scholar
Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell122, 421–434 (2005). CASPubMed Google Scholar
Oh, H. & Irvine, K. D. In vivo regulation of Yorkie phosphorylation and localization. Development135, 1081–1088 (2008). CASPubMed Google Scholar
Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell14, 388–398 (2008). CASPubMed Google Scholar
Goulev, Y. et al. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr. Biol.18, 435–441 (2008). CASPubMed Google Scholar
Chan, S. W. et al. TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J. Biol. Chem.284, 14347–14358 (2009). CASPubMedPubMed Central Google Scholar
Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev.23, 2307–2319 (2009). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell14, 377–387 (2008). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial–mesenchymal transition. J. Biol. Chem.284, 13355–13362 (2009). CASPubMedPubMed Central Google Scholar
Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA108, e1312–e1320 (2011). CASPubMedPubMed Central Google Scholar
Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biol.8, 27–36 (2006). CASPubMed Google Scholar
Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell18, 300–308 (2010). CASPubMedPubMed Central Google Scholar
Yu, J. et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell18, 288–299 (2010). CASPubMedPubMed Central Google Scholar
Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell19, 27–38 (2010). CASPubMedPubMed Central Google Scholar
Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol.20, 573–581 (2010). CASPubMed Google Scholar
Chen, C.-L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc. Natl Acad. Sci. USA109, 484–489 (2011). PubMedPubMed Central Google Scholar
Doggett, K., Grusche, F. A., Richardson, H. E. & Brumby, A. M. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras–Raf through impaired Hippo pathway signaling. BMC Dev. Biol.11, 57 (2011). CASPubMedPubMed Central Google Scholar
Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol.350, 139–151 (2011). CASPubMed Google Scholar
Dow, L. E. & Humbert, P. O. Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. Int. Rev. Cytol.262, 253–302 (2007). CASPubMed Google Scholar
Laprise, P. & Tepass, U. Novel insights into epithelial polarity proteins in Drosophila. Trends Cell Biol.21, 401–408 (2011). CASPubMed Google Scholar
Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr. Biol.20, 582–590 (2010). CASPubMedPubMed Central Google Scholar
Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA107, 10532–10537 (2010). CASPubMedPubMed Central Google Scholar
Chen, C.-L. et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA107, 15810–15815 (2010). CASPubMedPubMed Central Google Scholar
Ikeda, M. et al. Hippo pathway-dependent and -independent roles of RASSF6. Sci. Signal.2, ra59 (2009). PubMed Google Scholar
Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homolog antagonizes the hippo pathway. Curr. Biol.16, 2459–2465 (2006). CASPubMedPubMed Central Google Scholar
Ribeiro, P. S. et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell39, 521–534 (2010). CASPubMed Google Scholar
Stephens, L. E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev.9, 1883–1895 (1995). CASPubMed Google Scholar
Monkley, S. J. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev. Dyn.219, 560–574 (2000). CASPubMed Google Scholar
Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA91, 8263–8267 (1994). CASPubMedPubMed Central Google Scholar
Miner, J. H., Cunningham, J. & Sanes, J. R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J. Cell Biol.143, 1713–1723 (1998). CASPubMedPubMed Central Google Scholar
Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biol.10, 429–436 (2008). CASPubMed Google Scholar
Weber, G. F., Bjerke, M. A. & DeSimone, D. W. A mechanoresponsive cadherin–keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell22, 104–115 (2012). CASPubMed Google Scholar
Eiraku, M., Adachi, T. & Sasai, Y. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays34, 17–25 (2012). CASPubMedPubMed Central Google Scholar
Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell21, 758–769 (2011). CASPubMedPubMed Central Google Scholar
Taber, L. A., Voronov, D. A. & Ramasubramanian, A. The role of mechanical forces in the torsional component of cardiac looping. Ann. NY Acad. Sci.1188, 103–110 (2010). PubMed Google Scholar
Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature421, 172–177 (2003). CASPubMed Google Scholar
Liu, Z. et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. USA107, 9944–9949 (2010). CASPubMedPubMed Central Google Scholar
Keller R., Davidson L. A. & Shook D. R. How we are shaped: the biomechanics of gastrulation. Differentiation71, 171–205 (2003). PubMed Google Scholar