Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI (original) (raw)

References

  1. de Curtis, I. Cell migration: GAPs between membrane traffic and the cytoskeleton. EMBO Rep. 2, 277–281 (2001).
    Article CAS Google Scholar
  2. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article CAS Google Scholar
  3. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).
    Article CAS Google Scholar
  4. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348 Pt 2, 241–255 (2000).
    Article CAS Google Scholar
  5. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal. 11, 545–554 (1999).
    Article CAS Google Scholar
  6. Seabra, M. C. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 10, 167–172 (1998).
    Article CAS Google Scholar
  7. Keep, N. H. et al. A modulator of rho family G proteins, Rho-GDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).
    Article CAS Google Scholar
  8. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).
    Article CAS Google Scholar
  9. Symons, M. Adhesion signalling: PAK meets Rac on solid ground. Curr. Biol. 10, R535–R537 (2000).
  10. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).
    Article CAS Google Scholar
  11. Dharmawardhane, S., Sanders, L. C., Martin, S. S., Daniels, R. H. & Bokoch, G. M. Localization of p21-Activated Kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell Biol. 138, 1–14 (1997).
    Article Google Scholar
  12. Lamarche, N. et al. Rac and cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).
    Article CAS Google Scholar
  13. Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 (1997).
    Article CAS Google Scholar
  14. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of rac and cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).
    Article CAS Google Scholar
  15. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 (1990).
    Article CAS Google Scholar
  16. Knaus, U. G., Wang, Y., Reilly, A. M., Warnock, D. & Jackson, J. H. Structural requirements for PAK activation by Rac GTPases. J. Biol. Chem. 273, 21512–21518 (1998).
    Article CAS Google Scholar
  17. Kozma, R., Ahmed, S., Best, A. & Lim, L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol. 15, 1942–1952 (1995).
    Article CAS Google Scholar
  18. Jordan, J. D., Landau, E. M. & Iyengar, R. Signalling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).
    Article CAS Google Scholar
  19. Teruel, M. N. & Meyer, T. Translocation and reversible localization of signalling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).
    Article CAS Google Scholar
  20. Kiosses, W. B., Shattil, S. J., Pampori, N. & Schwartz, M. A. Rac recruits high-affinity integrin αvβ3 to lamellipodia in endothelial cell migration. Nature Cell Biol. 3, 316–320 (2001).
    Article CAS Google Scholar
  21. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signalling proteins. J. Cell Biol. 131, 791–805 (1995).
    Article CAS Google Scholar
  22. Schwartz, M. A., Lechene, C. & Ingber, D. E. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape. Proc. Natl Acad. Sci. USA 88, 7849–7853 (1991).
    Article CAS Google Scholar
  23. Lewis, J. M. & Schwartz, M. A. Mapping in vivo associations of cytoplasmic proteins with integrin β1 cytoplasmic domain mutants. Mol. Biol. Cell 6, 151–160 (1995).
    Article CAS Google Scholar
  24. Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signalling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).
    Article CAS Google Scholar
  25. Woods, A. & Couchman, J. R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell 5, 183–192 (1994).
    Article CAS Google Scholar
  26. Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D. & Gierschik, P. The Rac–Rho-GDI complex and the structural basis for the regulation of Rho proteins by Rho-GDI. Nature Struct. Biol. 7, 122–126 (2000).
    Article CAS Google Scholar
  27. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator Rho-GDI. Cell 100, 345–356 (2000).
    Article CAS Google Scholar
  28. Lian, L. Y. et al. Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor Rho-GDI-1. Structure Fold Des. 8, 47–55 (2000).
    Article CAS Google Scholar
  29. Longenecker, K. et al. How Rho-GDI binds Rho. Acta Crystallogr. D. Biol. Crystallogr. 55, 1503–1515 (1999).
    Article CAS Google Scholar
  30. Read, P. W. et al. Human RhoA/Rho-GDI complex expressed in yeast: GTP exchange is sufficient for translocation of RhoA to liposomes. Protein Sci. 9, 376–386 (2000).
    Article CAS Google Scholar
  31. Dirac-Svejstrup, A. B., Sumizawa, T. & Pfeffer, S. R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J. 16, 465–472 (1997).
    Article CAS Google Scholar
  32. Chant, J. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15, 365–391 (1999).
    Article CAS Google Scholar
  33. Johnson, D. I. & Pringle, J. R. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111, 143–152 (1990).
    Article CAS Google Scholar
  34. Leng, J., Klemke, R. L., Reddy, A. C. & Cheresh, D. A. Potentiation of cell migration by adhesion-dependent cooperative signals from the GTPase Rac and Raf kinase. J. Biol. Chem. 274, 37855–37861 (1999).
    Article CAS Google Scholar
  35. Habets, G. G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77, 537–549 (1994).
    Article CAS Google Scholar
  36. Michiels, F., Habets, G. G. M., Stam, J. C., vanderKammen, R. A. & Collard, J. G. A function for rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).
    Article CAS Google Scholar
  37. Fukumoto, Y. et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5, 1321–1328 (1990).
    CAS PubMed Google Scholar
  38. Moriyoshi, K., Richards, L. J., Akazawa, C., O'Leary, D. D. & Nakanishi, S. Labeling neural cells using adenoviral gene transfer of membrane- targeted GFP. Neuron 16, 255–260 (1996).
    Article CAS Google Scholar
  39. del Pozo, M. A., Vicente-Manzanares, M., Tejedor, R., Serrador, J. M. & Sanchez-Madrid, F. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur. J. Immunol. 29, 3609–3620 (1999).
    Article CAS Google Scholar
  40. Chamberlain, C. E., Kraynov, V. S. & Hahn, K. M. Imaging spatiotemporal dynamics of Rac activation in vivo with FLAIR. Methods Enzymol. 325, 389–400 (2000).
    Article CAS Google Scholar
  41. Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signalling pathways in cells. J. Biol. Chem. 274, 2279–2285 (1999).
    Article CAS Google Scholar
  42. Gong, M. C. et al. Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II. Am. J. Physiol. Cell Physiol. 281, C257–C269 (2001).
  43. Read, P. W. & Nakamoto, R. K. Expression and purification of Rho/Rho-GDI complexes. Methods Enzymol. 325, 15–25 (2000).
    Article CAS Google Scholar
  44. Renshaw, M. W., Ren, X.-D. & Schwartz, M. A. Growth factor activation of MAP kinase requires cell adhesion. EMBO J. 16, 5592–5599 (1997).
    Article CAS Google Scholar
  45. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. A function for p21-activated kinase in endothelial cell migration. J. Cell. Biol. 147, 831–844 (1999).
    Article CAS Google Scholar
  46. Chamberlain, C. & Hahn, K. M. Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells. Traffic 1, 755–762 (2000).
    Article CAS Google Scholar
  47. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507–513 (1994).
    Article CAS Google Scholar

Download references