NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex (original) (raw)
Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev.51, 7–61 (1999). CASPubMed Google Scholar
Petralia, R.S., Rubio, M.E., Wang, Y.-X. & Wenthold, R.J. in Handbook of Chemical Neuroanatomy, Vol. 18. Glutamate (eds. Ottersen, O.P. & Storm-Mathisen, J.) 145–182 (Elsevier, New York, 2000). Google Scholar
Garner, C.C., Nash, J. & Huganir, R.L. PDZ Domains in synapse assembly and signalling. Trends Cell Biol.10, 274–280 (2000). ArticleCAS Google Scholar
Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci.1, 133–141 (2000). ArticleCAS Google Scholar
Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci.24, 1–29 (2001). ArticleCAS Google Scholar
Tomita, S., Nicoll, R.A. & Bredt, D.S. PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol.153, F19–F24 (2001). ArticleCAS Google Scholar
Kittler, J.T. & Moss, S.J. Neurotransmitter receptor trafficking and the regulation of synaptic strength. Traffic2, 437–448 (2001). ArticleCAS Google Scholar
Standley, S., Roche, K.W., McCallum, J., Sans, N. & Wenthold, R.J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron28, 887–898 (2000). ArticleCAS Google Scholar
Scott, D.B., Blanpied, T.A., Swanson, G.T., Zhang, C. & Ehlers, M.D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci.21, 3063–3072 (2001). ArticleCAS Google Scholar
Xia, H., Hornby, Z.D. & Malenka, R.C. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology41, 714–723 (2001). ArticleCAS Google Scholar
Sans, N. et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J. Neurosci.21, 7506–7516 (2001). ArticleCAS Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). ArticleCAS Google Scholar
Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell105, 331–343 (2001). ArticleCAS Google Scholar
Bowser, R., Muller, H., Govindan, B. & Novick, P. Sec8p and Sec15p are components of a plasma membrane-associated 19. 5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol.118, 1041–1056 (1992). ArticleCAS Google Scholar
Hsu, S.C. et al. The mammalian brain rsec6/8 complex. Neuron17, 1209–1219 (1996). ArticleCAS Google Scholar
Hsu, S.C., Hazuka, C.D., Foletti, D.L. & Scheller, R.H. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol.9, 150–153 (1999). ArticleCAS Google Scholar
Hazuka, C.D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse assembly domains. J. Neurosci.19, 1324–1334 (1999). ArticleCAS Google Scholar
Yeaman, C., Grindstaff, K.K., Wright, J.R. & Nelson, W.J. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol.155, 593–604 (2001). ArticleCAS Google Scholar
Vega, I.E. & Hsu, S.C. The exocyst associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci.21, 3839–3848 (2001). ArticleCAS Google Scholar
Shin, D.M., Zhao, X.S., Zeng, W., Mozhayeva, M. & Muallem, S. The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J. Cell Biol.150, 1101–1112 (2000). ArticleCAS Google Scholar
Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol.12, 247–249 (2002). ArticleCAS Google Scholar
Muller, B.M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron17, 255–265 (1996). ArticleCAS Google Scholar
Lau, L.F. et al. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J. Biol. Chem.271, 21622–21628 (1996). ArticleCAS Google Scholar
Makino, K. et al. Cloning and characterization of NE-dlg: a novel human homolog of the Drosophila discs large (dlg) tumor suppressor protein interacts with the APC protein. Oncogene22, 2425–2433 (1997). Article Google Scholar
Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci.20, 1260–1271 (2000). ArticleCAS Google Scholar
Kee, Y. et al. Subunit structure of the mammalian exocyst complex. Proc. Natl. Acad. Sci. U.S.A.94, 14438–14443 (1997). ArticleCAS Google Scholar
Hawkins, L.M., Chazot, P.L. & Stephenson, F.A. Biochemical evidence for the co-association of three N-methyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors. J. Biol. Chem.274, 27211–27218 (1999). ArticleCAS Google Scholar
McIlhinney, R.A.J. et al. Assembly, intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology37, 1355–1367 (1998). ArticleCAS Google Scholar
Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci.15, 7781–7792 (1999). Article Google Scholar
Cik, M., Chazot, P.L. & Stephenson, F.A. Optimal expression of cloned NMDAR1/NMDAR2A heteromeric glutamate receptors: a biochemical characterization. Biochem. J.296, 877–883 (1993). ArticleCAS Google Scholar
Losi, G., Prybylowski, K., Fu, Z., Luo, J.H. & Vicini S. Silent synapses in developing cerebellar granule neurons. J. Neurophysiol.87, 1263–1270 (2002). ArticleCAS Google Scholar
Prybylowski, K. et al. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci.22, 8902–8910 (2002). ArticleCAS Google Scholar
Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci.114, 3219–3231 (2001). CASPubMed Google Scholar
Ma, D. & Jan, L.Y. ER transport signals and trafficking of potassium channels and receptors. Curr. Opin. Neurobiol.12, 287–292 (2002). ArticleCAS Google Scholar
Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell93, 731–740 (1998). ArticleCAS Google Scholar
Hsu, S.C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron20, 1111–1122 (1998). ArticleCAS Google Scholar
Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell92, 279–289 (1998). ArticleCAS Google Scholar
Mori, H. et al. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron21, 571–580 (1998). ArticleCAS Google Scholar
Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron35, 345–353 (2002). ArticleCAS Google Scholar
Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron34, 255–264 (2002). ArticleCAS Google Scholar
Rumbaugh, G. & Vicini, S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J. Neurosci.19, 10603–10610 (1999). ArticleCAS Google Scholar
Tovar, K.R. & Westbrook, G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci.19, 4180–4188 (1999). ArticleCAS Google Scholar
Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron28, 511–525 (2000). ArticleCAS Google Scholar
Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci.4, 794–802 (2001). ArticleCAS Google Scholar
Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci.4, 587–596 (2001). ArticleCAS Google Scholar
Snyder, E.M., Philpot, B.D., Huber, K.M., Dong, X., Fallon, J.R. & Bear, M.F. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci.4, 1079–1085 (2001). ArticleCAS Google Scholar
Chazot, P.L. & Stephenson, F.A. Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J. Neurochem.68, 507–516 (1997). ArticleCAS Google Scholar