RNA catalysis through compartmentalization (original) (raw)

References

  1. Deeds, E. J., Ashenberg, O., Gerardin, J. & Shakhnovich, E. I. Robust protein–protein interactions in crowded cellular environments. Proc. Natl Acad. Sci. USA 104, 14952–14957 (2007).
    Article CAS Google Scholar
  2. Matera, G. & Shpargel, K. Pumping RNA. Nuclear bodybuilding along the RNA pipeline. Curr. Opin. Cell Biol. 18, 317–324 (2006).
    Article CAS Google Scholar
  3. Atkins, J. F., Gesteland, R. F. & Cech, T. R. RNA Worlds: From Life's Origins to Diversity in Gene Regulation (Cold Spring Harbor Press, 2010).
    Google Scholar
  4. Albertsson, P. Å. Partition of Cell Particles and Macromolecules (Wiley, 1960).
    Google Scholar
  5. Zaslavsky, B. Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications (Marcel Dekker, 1995).
    Google Scholar
  6. Hatti-Kaul, R. Aqueous Two-Phase Systems: Methods and Protocols (Humana Press, 2000).
    Book Google Scholar
  7. Albertsson, P. Å . & Tjerneld, F. Phase diagrams. Methods Enzymol. 228, 3–13 (1994).
    Article CAS Google Scholar
  8. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).
    Article CAS Google Scholar
  9. Zhou, H. X., Rivas, G. & Minton, A. P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).
    Article CAS Google Scholar
  10. Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).
    Article CAS Google Scholar
  11. Diamond, A. D. & Hsu, J. T. Fundamental studies of biomolecule partitioning in aqueous two-phase systems. Biotechnol. Bioeng. 34, 1000–1014 (1989).
    Article CAS Google Scholar
  12. Stage-Zimmermann, T. K. & Uhlenbeck, O. C. Hammerhead ribozyme kinetics. RNA 4, 875–889 (1998).
    Article CAS Google Scholar
  13. Scott, W. G., Finch, J. T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).
    Article CAS Google Scholar
  14. Martick, M. & Scott, W. G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).
    Article CAS Google Scholar
  15. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S. D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct. Mol. Biol. 10, 708–712 (2003).
    Article CAS Google Scholar
  16. Lambert, D., Heckman, J. E. & Burke, J. M. Three conserved guanosines approach the reaction site in native and minimal hammerhead ribozymes. Biochemistry 45, 7140–7147 (2006).
    Article CAS Google Scholar
  17. Osborne, E. M., Schaak, J. E. & Derose, V. J. Characterization of a native hammerhead ribozyme derived from schistosomes. RNA 11, 187–196 (2005).
    Article CAS Google Scholar
  18. Laing, L. G. & Draper, D. E. Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J. Mol. Biol. 237, 560–576 (1994).
    Article CAS Google Scholar
  19. Hertel, K. J., Herschlag, D. & Uhlenbeck, O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).
    Article CAS Google Scholar
  20. Hertel, K. J., Hershclag, D. & Uhlenbeck, O. C. Specificity of hammerhead ribozyme cleavage. EMBO J. 15, 3751–3757 (1996).
    Article CAS Google Scholar
  21. Long, M. S. & Keating, C. D. Nanoparticle conjugation increases protein partitioning in aqueous two-phase systems. Anal. Chem. 78, 379–386 (2006).
    Article CAS Google Scholar
  22. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. Molecular Biology of the Cell 3rd edn (Garland Publishing, 1994).
    Google Scholar
  23. Feig, A. L. & Uhlenbeck, O. The Role of Metal Ions in RNA Biochemistry. In The RNA World (Cold Spring Harbor Press, 1999).
    Google Scholar
  24. Herschlag, D. & Cech, T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. Biochemistry 29, 10172–10180 (1990).
    Article CAS Google Scholar
  25. Nakano, S., Karimata, H. T., Kitagawa, Y. & Sugimoto, N. Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J. Am. Chem. Soc. 131, 16881–16888 (2009).
    Article CAS Google Scholar
  26. Keighron, J. D. & Keating, C. D. Towards a Minimal Cytoplasm. In The Minimal Cell (Springer, 2011).
    Google Scholar
  27. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).
    Article Google Scholar
  28. Joyce, G. F. Molecular evolution: booting up life. Nature 420, 278–279 (2002).
    Article CAS Google Scholar
  29. Jencks, W. P. Catalysis in Chemistry and Enzymology (Dover, 1969).
    Google Scholar
  30. Levy, M., Griswold, K. E. & Ellington, A. D. Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization. RNA 11, 1555–1562 (2005).
    Article CAS Google Scholar
  31. Ghadessy, F. J., Ong, J. L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl Acad. Sci. USA 98, 4552–4557 (2001).
    Article CAS Google Scholar
  32. Griffiths, A. D. & Tawfik, D. S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 22, 24–35 (2003).
    Article CAS Google Scholar
  33. Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005).
    Article CAS Google Scholar
  34. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
    Article CAS Google Scholar
  35. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nature Rev. Mol. Cell Biol. 4, 605–612 (2003).
    Article CAS Google Scholar
  36. Lewis, J. D. & Tollervey, D. Like attracts like: getting RNA processing together in the nucleus. Science 288, 1385–1389 (2000).
    Article CAS Google Scholar
  37. Brangwynne, C. P. Soft active aggregates:mechanics, dynamics and self-assembly of liquid-like intracellular protein bodies. Soft Matter 7, 3052–3059 (2011).
    Article CAS Google Scholar
  38. Chubb, J. R. & Bickmore, W. A. Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403–406 (2003).
    Article CAS Google Scholar
  39. Hancock, R. A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol. 146, 281–290 (2004).
    Article CAS Google Scholar
  40. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).
    Article CAS Google Scholar
  41. Woese, C. R. On the evolution of the genetic code. Proc. Natl Acad. Sci. USA 54, 1546–1552 (1965).
    Article CAS Google Scholar
  42. Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).
    Article CAS Google Scholar
  43. Crick, F. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).
    Article CAS Google Scholar
  44. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
    Article CAS Google Scholar
  45. Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. http://dx.doi.org/10.1021/ar200294y.
  46. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chem. 3, 720–724 (2011).
    Article CAS Google Scholar
  47. Oparin, A. I., Serebrovskaya, K. B. & Auerman, T. L. Synthesizing action of polynucleotidephosphorylase of Micrococcus lysodeikticus in solution and in coacervate systems. Biokhimiya 26, 499–504 (1961).
    CAS Google Scholar

Download references