Chang, Z.L. & Chen, Y.Y. CARs: synthetic immunoreceptors for cancer therapy and Beyond. Trends Mol. Med.23, 430–450 (2017). CASPubMedPubMed Central Google Scholar
Brown, C.E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med.375, 2561–2569 (2016). CASPubMedPubMed Central Google Scholar
Ali, A. et al. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J. Virol.90, 6999–7006 (2016). CASPubMedPubMed Central Google Scholar
Ellebrecht, C.T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science353, 179–184 (2016). CASPubMedPubMed Central Google Scholar
Hombach, A. et al. An anti-CD30 chimeric receptor that mediates CD3-ζ-independent T-cell activation against Hodgkin's lymphoma cells in the presence of soluble CD30. Cancer Res.58, 1116–1119 (1998). CASPubMed Google Scholar
Lanitis, E. et al. Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol. Ther.20, 633–643 (2012). CASPubMed Google Scholar
Nolan, K.F. et al. Bypassing immunization: optimized design of “designer T cells” against carcinoembryonic antigen (CEA)-expressing tumors, and lack of suppression by soluble CEA. Clin. Cancer Res.5, 3928–3941 (1999). CASPubMed Google Scholar
Westwood, J.A. et al. The Lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum. J. Immunother.32, 292–301 (2009). CASPubMed Google Scholar
Ma, Q., DeMarte, L., Wang, Y., Stanners, C.P. & Junghans, R.P. Carcinoembryonic antigen-immunoglobulin Fc fusion protein (CEA-Fc) for identification and activation of anti-CEA immunoglobulin-T-cell receptor-modified T cells, representative of a new class of Ig fusion proteins. Cancer Gene Ther.11, 297–306 (2004). CASPubMed Google Scholar
Carpenter, R.O. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res.19, 2048–2060 (2013). CASPubMedPubMed Central Google Scholar
McGuinness, R.P. et al. Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum. Gene Ther.10, 165–173 (1999). CASPubMed Google Scholar
Chmielewski, M. et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology143, 1095–1107. e2 (2012). CASPubMed Google Scholar
Irving, B.A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell64, 891–901 (1991). CASPubMed Google Scholar
Letourneur, F. & Klausner, R.D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc. Natl. Acad. Sci. USA88, 8905–8909 (1991). CASPubMedPubMed Central Google Scholar
Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell64, 1037–1046 (1991). CASPubMed Google Scholar
Leibly, D.J. et al. A suite of engineered GFP molecules for oligomeric scaffolding. Structure23, 1754–1768 (2015). CASPubMedPubMed Central Google Scholar
Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol.17, 133–138 (2010). CASPubMed Google Scholar
Tang, J.C.Y. et al. A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell154, 928–939 (2013). CASPubMedPubMed Central Google Scholar
Mack, M., Riethmüller, G. & Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. USA92, 7021–7025 (1995). CASPubMedPubMed Central Google Scholar
Urbanska, K. et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res.72, 1844–1852 (2012). CASPubMedPubMed Central Google Scholar
Tamada, K. et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res.18, 6436–6445 (2012). CASPubMed Google Scholar
Rabinovich, G.A., Gabrilovich, D. & Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol.25, 267–296 (2007). CASPubMedPubMed Central Google Scholar
Flavell, R.A., Sanjabi, S., Wrzesinski, S.H. & Licona-Limón, P. The polarization of immune cells in the tumour environment by TGF-β. Nat. Rev. Immunol.10, 554–567 (2010). CASPubMed Google Scholar
Koehler, H., Kofler, D., Hombach, A. & Abken, H. CD28 costimulation overcomes transforming growth factor-beta-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res.67, 2265–2273 (2007). CASPubMed Google Scholar
Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol.158, 1263–1275 (2002). CASPubMedPubMed Central Google Scholar
Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med.202, 1031–1036 (2005). CASPubMedPubMed Central Google Scholar
Kim, S.T. et al. The alphabeta T cell receptor is an anisotropic mechanosensor. J. Biol. Chem.284, 31028–31037 (2009). CASPubMedPubMed Central Google Scholar
Li, Y.-C. et al. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol.184, 5959–5963 (2010). CASPubMed Google Scholar
Liu, B., Chen, W., Evavold, B.D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell157, 357–368 (2014). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer Res.70, 1082–1089 (2010). CASPubMedPubMed Central Google Scholar
Hargreaves, P.G. & Al-Shamkhani, A. Soluble CD30 binds to CD153 with high affinity and blocks transmembrane signaling by CD30. Eur. J. Immunol.32, 163–173 (2002). CASPubMed Google Scholar
Schwesinger, F. et al. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA97, 9972–9977 (2000). CASPubMedPubMed Central Google Scholar
Zhang, H., Cordoba, S.-P., Dushek, O. & van der Merwe, P.A. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl. Acad. Sci. USA108, 19323–19328 (2011). CASPubMedPubMed Central Google Scholar
Dobbins, J. et al. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci. Signal.9, ra75 (2016). PubMedPubMed Central Google Scholar
van der Merwe, P.A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol.11, 47–55 (2011). CASPubMed Google Scholar
Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C θ translocation. Immunity29, 589–601 (2008). CASPubMedPubMed Central Google Scholar
Sadelain, M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr. Opin. Immunol.41, 68–76 (2016). CASPubMedPubMed Central Google Scholar
Kalos, M. & June, C.H. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity39, 49–60 (2013). CASPubMed Google Scholar
Matsuda, M., Koga, M., Nishida, E. & Ebisuya, M. Synthetic signal propagation through direct cell-cell interaction. Sci. Signal.5, ra31 (2012). PubMed Google Scholar
Gordon, W.R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell33, 729–736 (2015). CASPubMedPubMed Central Google Scholar
Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell164, 780–791 (2016). CASPubMedPubMed Central Google Scholar
Schwarz, K.A., Daringer, N.M., Dolberg, T.B. & Leonard, J.N. Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol.13, 202–209 (2017). CASPubMed Google Scholar
Hanash, S.M., Pitteri, S.J. & Faca, V.M. Mining the plasma proteome for cancer biomarkers. Nature452, 571–579 (2008). CASPubMed Google Scholar
Fedorov, V.D., Themeli, M. & Sadelain, M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med.5, 215ra172 (2013). PubMedPubMed Central Google Scholar
Kloss, C.C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol.31, 71–75 (2013). CASPubMed Google Scholar
Grada, Z. et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucleic Acids2, e105 (2013). PubMedPubMed Central Google Scholar
Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M.C. & Chen, Y.Y. T Cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res.4, 498–508 (2016). CASPubMedPubMed Central Google Scholar
Jonnalagadda, M. et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol. Ther.23, 757–768 (2015). CASPubMedPubMed Central Google Scholar
Nguyen, P., Moisini, I. & Geiger, T.L. Identification of a murine CD28 dileucine motif that suppresses single-chain chimeric T-cell receptor expression and function. Blood102, 4320–4325 (2003). CASPubMed Google Scholar
Moeller, M. et al. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Ther.11, 371–379 (2004). CASPubMed Google Scholar
Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol.183, 5563–5574 (2009). CASPubMed Google Scholar
Gressner, A.M., Weiskirchen, R., Breitkopf, K. & Dooley, S. Roles of TGF-beta in hepatic fibrosis. Front. Biosci.7, d793–d807 (2002). CASPubMed Google Scholar
Junker, U. et al. Transforming growth factor beta 1 is significantly elevated in plasma of patients suffering from renal cell carcinoma. Cytokine8, 794–798 (1996). CASPubMed Google Scholar
Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176 (2000). PubMedPubMed Central Google Scholar
Zhang, Q. et al. Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res.65, 1761–1769 (2005). CASPubMed Google Scholar
Foster, A.E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother.31, 500–505 (2008). CASPubMedPubMed Central Google Scholar
El Hentati, F.-Z., Gruy, F., Iobagiu, C. & Lambert, C. Variability of CD3 membrane expression and T cell activation capacity. Cytometry B Clin. Cytom.78, 105–114 (2010). PubMed Google Scholar