Goronzy, J.J. & Weyand, C.M. Developments in the scientific understanding of rheumatoid arthritis. Arthritis Res. Ther.11, 249 (2009). Article Google Scholar
Arnold, J.N. et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol.25, 21–50 (2007). ArticleCAS Google Scholar
Alavi, A. & Axford, J.S. Sweet and sour: the impact of sugars on disease. Rheumatology47, 760–770 (2008). ArticleCAS Google Scholar
Parekh, R.B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature316, 452–457 (1985). ArticleCAS Google Scholar
Kaneko, Y., Nimmerjahn, F., Madaio, M.P. & Ravetch, J.V. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J. Exp. Med.203, 789–797 (2006). ArticleCAS Google Scholar
Anthony, R.M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science320, 373–376 (2008). ArticleCAS Google Scholar
Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med.1, 237–243 (1995). ArticleCAS Google Scholar
Yamaguchi, Y. et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim. Biophys. Acta1760, 693–700 (2006). ArticleCAS Google Scholar
Mimura, Y. et al. Role of oligosaccharide residues of IgG1-Fc in Fc γ RIIb binding. J. Biol. Chem.276, 45539–45547 (2001). ArticleCAS Google Scholar
Scallon, B.J. et al. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol.44, 1524–1534 (2007). ArticleCAS Google Scholar
Anthony, R.M., Wermeling, F., Karlsson, M.C. & Ravetch, J.V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl. Acad. Sci. USA105, 19571–19578 (2008). ArticleCAS Google Scholar
Burmeister, W.P., Huber, A.H. & Bjorkman, P.J. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature372, 379–383 (1994). ArticleCAS Google Scholar
Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc γRIII complex. Nature406, 267–273 (2000). ArticleCAS Google Scholar
Radaev, S. et al. The structure of a human type III Fcγ receptor in complex with Fc. J. Biol. Chem.276, 16469–16477 (2001). ArticleCAS Google Scholar
Idusogie, E.E. et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol.164, 4178–4184 (2000). ArticleCAS Google Scholar
Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry20, 2361–2370 (1981). ArticleCAS Google Scholar
Yamaguchi, Y. et al. Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective C-13 labeling of the glycans. J. Biomol. NMR12, 385–394 (1998). ArticleCAS Google Scholar
Wormald, M.R. et al. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry36, 1370–1380 (1997). ArticleCAS Google Scholar
Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta1780, 472–478 (2008). ArticleCAS Google Scholar
Barb, A.W., Brady, E.K. & Prestegard, J.H. Branch-specific sialylation of IgG-Fc glycans by ST6Gal-I. Biochemistry48, 9705–9707 (2009). ArticleCAS Google Scholar
Mittermaier, A. & Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science312, 224–228 (2006). ArticleCAS Google Scholar
Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure15, 267–273 (2007). ArticleCAS Google Scholar
Barb, A.W. et al. Intramolecular glycan-protein interactions in glycoproteins. Methods Enzymol.477, 365–388 (2010). Article Google Scholar
Cavanagh, J. Protein NMR Spectroscopy: Principles and Practice 2nd edn. (Academic Press, 2007).
Palmer, A.G. III, Kroenke, C.D. & Loria, J.P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol.339, 204–238 (2001). ArticleCAS Google Scholar
Hansen, D.F. et al. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J. Am. Chem. Soc.130, 2667–2675 (2008). ArticleCAS Google Scholar
Raju, T.S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol.20, 471–478 (2008). ArticleCAS Google Scholar
Bock, K., Pedersen, C. & Pedersen, H. Carbon-13 nuclear magnetic resonance data for oligosaccharides. Adv. Carbohydr. Chem. Biochem.42, 193–225 (1984). ArticleCAS Google Scholar
Wieruszeski, J.M., Michalski, J.C., Montreuil, J. & Strecker, G. Sequential H-1 and C-13 resonance assignments for an octasaccharide and decasaccharide of the _N_-acetyllactosamine type by multiple-step relayed correlation and hetero-nuclear correlation nuclear magnetic-resonance. Glycoconj. J.6, 183–194 (1989). ArticleCAS Google Scholar
Vliegenthart, J.F.G., Dorland, L. & van Halbeek, H. High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv. Carbohydr. Chem. Biochem.41, 209–374 (1983). ArticleCAS Google Scholar
Voynov, V. et al. Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation. PLoS ONE4, e8425 (2009). Article Google Scholar
Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc.104, 4546–4559 (1982). ArticleCAS Google Scholar
Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc.104, 4559–4570 (1982). ArticleCAS Google Scholar
Raju, T.S. et al. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal _N_-acetylglucosamine and galactose residues. Biochemistry40, 8868–8876 (2001). ArticleCAS Google Scholar
Lund, J. et al. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc γ receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol.157, 4963–4969 (1996). CASPubMed Google Scholar
DeLano, W.L., Ultsch, M.H., de Vos, A.M. & Wells, J.A. Convergent solutions to binding at a protein-protein interface. Science287, 1279–1283 (2000). ArticleCAS Google Scholar
Hirotsu, K. & Shimada, A. Crystal and molecular-structure of β-lactose. Bull. Chem. Soc. Jpn.47, 1872–1879 (1974). ArticleCAS Google Scholar