Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target (original) (raw)
Marshall, L., Kenneth, N.S. & White, R.J. Elevated tRNA(iMet) synthesis can drive cell proliferation and oncogenic transformation. Cell133, 78–89 (2008). ArticleCAS Google Scholar
Ranganathan, A.C., Ojha, S., Kourtidis, A., Conklin, D.S. & Aguirre-Ghiso, J.A. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res.68, 3260–3268 (2008). ArticleCASPubMed Central Google Scholar
Harding, H.P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. USA106, 1832–1837 (2009). ArticleCAS Google Scholar
Heaney, J.D., Michelson, M.V., Youngren, K.K., Lam, M.Y. & Nadeau, J.H. Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Hum. Mol. Genet.18, 1395–1404 (2009). ArticleCASPubMed Central Google Scholar
Skalnikova, H. et al. Protein signaling pathways in differentiation of neural stem cells. Proteomics8, 4547–4559 (2008). ArticleCAS Google Scholar
Asano, K., Clayton, J., Shalev, A. & Hinnebusch, A.G. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev.14, 2534–2546 (2000). ArticleCASPubMed Central Google Scholar
Algire, M.A., Maag, D. & Lorsch, J.R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell20, 251–262 (2005). ArticleCAS Google Scholar
Prostko, C.R., Dholakia, J.N., Brostrom, M.A. & Brostrom, C.O. Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J. Biol. Chem.270, 6211–6215 (1995). ArticleCAS Google Scholar
Srivastava, S.P., Davies, M.V. & Kaufman, R.J. Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J. Biol. Chem.270, 16619–16624 (1995). ArticleCAS Google Scholar
Aktas, H. et al. Depletion of intracellular Ca2+ stores, phosphorylation of eIF2alpha, and sustained inhibition of translation initiation mediate the anticancer effects of clotrimazole. Proc. Natl. Acad. Sci. USA95, 8280–8285 (1998). ArticleCAS Google Scholar
Donzé, O., Jagus, R., Koromilas, A.E., Hershey, J.W. & Sonenberg, N. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J.14, 3828–3834 (1995). ArticlePubMed Central Google Scholar
Rosenwald, I.B., Hutzler, M.J., Wang, S., Savas, L. & Fraire, A.E. Expression of eukaryotic translation initiation factors 4E and 2alpha is increased frequently in bronchioloalveolar but not in squamous cell carcinomas of the lung. Cancer92, 2164–2171 (2001). ArticleCAS Google Scholar
Abraham, N. et al. The murine PKR tumor suppressor gene is rearranged in a lymphocytic leukemia. Exp. Cell Res.244, 394–404 (1998). ArticleCAS Google Scholar
Rosenwald, I.B. et al. Expression of the translation initiation factors eIF-4E and eIF-2* is frequently increased in neoplastic cells of Hodgkin lymphoma. Hum. Pathol.39, 910–916 (2008). ArticleCAS Google Scholar
Rosenwald, I.B., Wang, S., Savas, L., Woda, B. & Pullman, J. Expression of translation initiation factor eIF-2alpha is increased in benign and malignant melanocytic and colonic epithelial neoplasms. Cancer98, 1080–1088 (2003). ArticleCAS Google Scholar
Wek, R.C., Jiang, H.Y. & Anthony, T.G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans.34, 7–11 (2006). ArticleCAS Google Scholar
Chen, J.J. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood109, 2693–2699 (2007). CASPubMedPubMed Central Google Scholar
Chen, J.J. Heme-regulated elF-2a kinase. in Translational Control of Gene Expression (eds. Sonenberg, N. et al.) 529–546 (Cold Spring Harbor Laboratory Press, New York, 2000).
Han, A.P., Fleming, M.D. & Chen, J.J. Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J. Clin. Invest.115, 1562–1570 (2005). ArticleCASPubMed Central Google Scholar
Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell5, 897–904 (2000). ArticleCAS Google Scholar
Marbach, I., Licht, R., Frohnmeyer, H. & Engelberg, D. Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J. Biol. Chem.276, 16944–16951 (2001). ArticleCAS Google Scholar
Su, Q. et al. Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J. Biol. Chem.283, 469–475 (2008). ArticleCAS Google Scholar
Biason-Lauber, A., Lang-Muritano, M., Vaccaro, T. & Schoenle, E.J. Loss of kinase activity in a patient with Wolcott-Rallison syndrome caused by a novel mutation in the EIF2AK3 gene. Diabetes51, 2301–2305 (2002). ArticleCAS Google Scholar
Harding, H.P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell6, 1099–1108 (2000). ArticleCAS Google Scholar
Lu, P.D., Harding, H.P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol.167, 27–33 (2004). ArticleCASPubMed Central Google Scholar
Vattem, K.M. & Wek, R.C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA101, 11269–11274 (2004). ArticleCAS Google Scholar
Ziegeler, G. et al. Embryonic lethal abnormal vision-like HuR-dependent mRNA stability regulates post-transcriptional expression of cyclin-dependent kinase inhibitor p27Kip1. J. Biol. Chem.285, 15408–15419 (2010). ArticleCASPubMed Central Google Scholar
Brewer, J.W. & Diehl, J.A. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. USA97, 12625–12630 (2000). ArticleCAS Google Scholar
Lomenick, B. et al. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA106, 21984–21989 (2009). ArticleCAS Google Scholar
Moerke, N.J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell128, 257–267 (2007). ArticleCAS Google Scholar
Lu, L., Han, A.P. & Chen, J.J. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol. Cell. Biol.21, 7971–7980 (2001). ArticleCASPubMed Central Google Scholar
Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell7, 1165–1176 (2001). ArticleCAS Google Scholar
Dever, T.E. Gene-specific regulation by general translation factors. Cell108, 545–556 (2002). ArticleCAS Google Scholar
Koromilas, A.E. et al. The interferon-inducible protein kinase PKR modulates the transcriptional activation of immunoglobulin kappa gene. J. Biol. Chem.270, 25426–25434 (1995). ArticleCAS Google Scholar
Boyce, M. et al. A pharmacoproteomic approach implicates eukaryotic elongation factor 2 kinase in ER stress-induced cell death. Cell Death Differ.15, 589–599 (2008). ArticleCAS Google Scholar
Boyce, M. et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science307, 935–939 (2005). ArticleCAS Google Scholar
Harding, H.P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell7, 1153–1163 (2001). ArticleCAS Google Scholar
Araki, E., Oyadomari, S. & Mori, M. Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp. Biol. Med. (Maywood)228, 1213–1217 (2003). ArticleCAS Google Scholar
Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol.1, 479–485 (1999). ArticleCAS Google Scholar
Xu, C., Bailly-Maitre, B. & Reed, J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115, 2656–2664 (2005). ArticleCASPubMed Central Google Scholar
Palakurthi, S.S., Aktas, H., Grubissich, L.M., Mortensen, R.M. & Halperin, J.A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res.61, 6213–6218 (2001). CASPubMed Google Scholar
Aktas, H., Cai, H. & Cooper, G.M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol.17, 3850–3857 (1997). ArticleCASPubMed Central Google Scholar