Versatility of biological non-heme Fe(II) centers in oxygen activation reactions (original) (raw)
Ozer, A. & Bruick, R.K. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol.3, 144–153 (2007). ArticleCASPubMed Google Scholar
Kirk, T.K. in Microbial Degradation of Organic Compounds Vol. 13 (ed. Gibson, D.T.) 399–438 (Marcel Dekker, Inc., New York, 1984). Google Scholar
Hakemian, A.S. & Rosenzweig, A.C. The biochemistry of methane oxidation. Annu. Rev. Biochem.76, 223–241 (2007). ArticleCASPubMed Google Scholar
Gibson, D.T. & Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol.11, 236–243 (2000). ArticleCASPubMed Google Scholar
Baldwin, J.E. & Abraham, E. Biosynthesis of penicillins and cephalosporins. Nat. Prod. Rep.5, 129–145 (1988). ArticleCASPubMed Google Scholar
Kershaw, N.J., Caines, M.E.C., Sleeman, M.C. & Schofield, C.J. The enzymology of clavam and carbapenem biosynthesis. Chem. Commun. (Camb) 4251–4263 (2005).
Pau, M.Y.M., Lipscomb, J.D. & Solomon, E.I. Substrate activation for O2 reactions by oxidized metal centers in biology. Proc. Natl. Acad. Sci. USA104, 18355–18362 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hayaishi, O., Katagiri, H. & Rothberg, S. Mechanism of the pyrocatechase reaction. J. Am. Chem. Soc.77, 5450–5451 (1955). ArticleCAS Google Scholar
Holm, R.H., Kennepohl, P. & Solomon, E.I. Structural and functional aspects of metal sites in biology. Chem. Rev.96, 2239–2314 (1996). ArticleCASPubMed Google Scholar
Costas, M., Mehn, M.P., Jensen, M.P. & Que, L. Jr. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev.104, 939–986 (2004). ArticleCASPubMed Google Scholar
Siegbahn, P.E.M. & Borowski, T. Modeling enzymatic reactions involving transition metals. Acc. Chem. Res.39, 729–738 (2006). ArticleCASPubMed Google Scholar
Nam, W. Dioxygen activation by metalloenzymes and models. Acc. Chem. Res.40, 465 (2007). ArticleCAS Google Scholar
Hegg, E.L. & Que, L. The 2-His-1-carboxylate facial triad: an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem.250, 625–629 (1997). ArticleCASPubMed Google Scholar
Arciero, D.M. & Lipscomb, J.D. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J. Biol. Chem.261, 2170–2178 (1986). ArticleCASPubMed Google Scholar
Sato, N. et al. Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase. J. Mol. Biol.321, 621–636 (2002). ArticleCASPubMed Google Scholar
Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol.54, 519–549 (2003). ArticleCASPubMed Google Scholar
Dagley, S. in The Bacteria Vol. 10 (ed. Sokatch, J.R.) 527–556 (Academic Press, New York, 1986). Google Scholar
Lipscomb, J.D. & Orville, A.M. Mechanistic aspects of dihydroxybenzoate dioxygenases. Met. Ions Biol. Syst.28, 243–298 (1992). CAS Google Scholar
Gibson, D.T. in Microbial Metabolism and the Carbon Cycle (eds. Hagedorn, S.R., Hanson, R.S. & Kunz, D.A.) 33–58 (Harwood Academic Publishers, Chur, Switzerland, 1988). Google Scholar
Vaillancourt, F.H., Bolin, J.T. & Eltis, L.D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol.41, 241–267 (2006). ArticleCASPubMed Google Scholar
Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W. & Bolin, J.T. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science270, 976–980 (1995). ArticleCASPubMed Google Scholar
Senda, T. et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol.255, 735–752 (1996). ArticleCASPubMed Google Scholar
Shu, L. et al. X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry34, 6649–6659 (1995). ArticleCASPubMed Google Scholar
Bugg, T.D.H. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron59, 7075–7101 (2003). ArticleCAS Google Scholar
Kovaleva, E.G., Neibergall, M.B., Chakrabarty, S. & Lipscomb, J.D. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc. Chem. Res.40, 475–483 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sanvoisin, J., Langley, G.J. & Bugg, T.D.H. Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J. Am. Chem. Soc.117, 7836–7837 (1995). ArticleCAS Google Scholar
Deeth, R.J. & Bugg, T.D.H. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. J. Biol. Inorg. Chem.8, 409–418 (2003). ArticleCASPubMed Google Scholar
Siegbahn, P.E.M. & Haeffner, F. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J. Am. Chem. Soc.126, 8919–8932 (2004). ArticleCASPubMed Google Scholar
Kovaleva, E.G. & Lipscomb, J.D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science316, 453–457 (2007). ArticleCASPubMedPubMed Central Google Scholar
Groce, S.L. & Lipscomb, J.D. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase: role of His200 in the kinetics of interconversion of reaction cycle intermediates. Biochemistry44, 7175–7188 (2005). ArticleCASPubMed Google Scholar
Groce, S.L. & Lipscomb, J.D. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme. J. Am. Chem. Soc.125, 11780–11781 (2003). ArticleCASPubMed Google Scholar
Ensley, B.D., Gibson, D.T. & Laborde, A.L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol.149, 948–954 (1982). ArticleCASPubMedPubMed Central Google Scholar
Kauppi, B. et al. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure6, 571–586 (1998). ArticleCASPubMed Google Scholar
Carredano, E. et al. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J. Mol. Biol.296, 701–712 (2000). ArticleCASPubMed Google Scholar
Furusawa, Y. et al. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol.342, 1041–1052 (2004). ArticleCASPubMed Google Scholar
Friemann, R. et al. Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J. Mol. Biol.348, 1139–1151 (2005). ArticleCASPubMed Google Scholar
Dong, X. et al. Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J. Bacteriol.187, 2483–2490 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pavel, E.G., Martins, L.J., Ellis, W.R. Jr. & Solomon, E.I. Magnetic circular dichroism studies of exogenous ligand and substrate binding to the non-heme ferrous active site in phthalate dioxygenase. Chem. Biol.1, 173–183 (1994). ArticleCASPubMed Google Scholar
Ohta, T., Chakrabarty, S., Lipscomb, J.D. & Solomon, E.I. Near-IR MCD of the non-heme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases. J. Am. Chem. Soc. published online, doi:10.1021/ja074769o (12 January 2008).
Wolfe, M.D., Parales, J.V., Gibson, D.T. & Lipscomb, J.D. Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J. Biol. Chem.276, 1945–1953 (2001). ArticleCASPubMed Google Scholar
Wolfe, M.D. et al. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry41, 9611–9626 (2002). ArticleCASPubMed Google Scholar
Beharry, Z.M. et al. Histidine ligand protonation and redox potential in the Rieske dioxygenases: role of a conserved aspartate in anthranilate 1,2-dioxygenase. Biochemistry42, 13625–13636 (2003). ArticleCASPubMed Google Scholar
Tarasev, M., Rhames, F. & Ballou, D.P. Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase. Biochemistry43, 12799–12808 (2004). ArticleCASPubMed Google Scholar
Wallar, B.J. & Lipscomb, J.D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev.96, 2625–2657 (1996). ArticleCASPubMed Google Scholar
Groves, J.T. High-valent iron in chemical and biological oxidations. J. Inorg. Biochem.100, 434–447 (2006). ArticleCASPubMed Google Scholar
Tarasev, M. & Ballou, D.P. Chemistry of the catalytic conversion of phthalate into its _cis_-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry44, 6197–6207 (2005). ArticleCASPubMed Google Scholar
Bassan, A., Blomberg, M.R.A. & Siegbahn, P.E.M. A theoretical study of the _cis_-dihydroxylation mechanism in naphthalene 1,2-dioxygenase. J. Biol. Inorg. Chem.9, 439–452 (2004). ArticleCASPubMed Google Scholar
Bassan, A., Blomberg, M.R.A., Siegbahn, P.E.M. & Que, L. Jr. Two faces of a biomimetic non-heme HO-Fe(V)=O oxidant: olefin epoxidation versus _cis_-dihydroxylation. Angew. Chem. Int. Ed.44, 2939–2941 (2005). ArticleCAS Google Scholar
Wolfe, M.D. & Lipscomb, J.D. Hydrogen peroxide-coupled _cis_-diol formation catalyzed by naphthalene 1,2-dioxygenase. J. Biol. Chem.278, 829–835 (2003). ArticleCASPubMed Google Scholar
Neibergall, M.B., Stubna, A., Mekmouche, Y., Münck, E. & Lipscomb, J.D. Hydrogen peroxide dependent _cis_-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase. Biochemistry46, 8004–8016 (2007). ArticleCASPubMed Google Scholar
Karlsson, A. et al. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science299, 1039–1042 (2003). ArticleCASPubMed Google Scholar
Chakrabarty, S., Austin, R.N., Deng, D., Groves, J.T. & Lipscomb, J.D. Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J. Am. Chem. Soc.129, 3514–3515 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hausinger, R.P. Fe(II)/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol.39, 21–68 (2004). ArticleCASPubMed Google Scholar
Elkins, J.M. et al. X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry41, 5185–5192 (2002). ArticleCASPubMed Google Scholar
Clifton, I.J., Hsueh, L.C., Baldwin, J.E., Harlos, K. & Schofield, C.J. Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur. J. Biochem.268, 6625–6636 (2001). ArticleCASPubMed Google Scholar
Clifton, I.J. et al. Crystal structure of carbapenem synthase (CarC). J. Biol. Chem.278, 20843–20850 (2003). ArticleCASPubMed Google Scholar
Ryle, M.J., Padmakumar, R. & Hausinger, R.P. Stopped-flow kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen. Biochemistry38, 15278–15286 (1999). ArticleCASPubMed Google Scholar
Price, J.C., Barr, E.W., Tirupati, B., Bollinger, J.M. Jr. & Krebs, C. The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin Fe(IV) complex in taurine alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry42, 7497–7508 (2003). ArticleCASPubMed Google Scholar
Sturgeon, B.E. et al. Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J. Am. Chem. Soc.118, 7551–7557 (1996). ArticleCAS Google Scholar
Lee, S.-K., Fox, B.G., Froland, W.A., Lipscomb, J.D. & Münck, E. A transient intermediate of the methane monooxygenase catalytic cycle containing a FeIVFeIV cluster. J. Am. Chem. Soc.115, 6450–6451 (1993). ArticleCAS Google Scholar
Price, J.C., Barr, E.W., Hoffart, L.M., Krebs, C. & Bollinger, J.M. Jr. Kinetic dissection of the catalytic mechanism of taurine:alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry44, 8138–8147 (2005). ArticleCASPubMed Google Scholar
Price, J.C., Barr, E.W., Glass, T.E., Krebs, C. & Bollinger, J.M. Jr. Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD). J. Am. Chem. Soc.125, 13008–13009 (2003). ArticleCASPubMed Google Scholar
Proshlyakov, D.A., Henshaw, T.F., Monterosso, G.R., Ryle, M.J. & Hausinger, R.P. Direct detection of oxygen intermediates in the non-heme Fe enzyme taurine/alpha -ketoglutarate dioxygenase. J. Am. Chem. Soc.126, 1022–1023 (2004). ArticleCASPubMed Google Scholar
Riggs-Gelasco, P.J. et al. EXAFS spectroscopic evidence for an Fe:O unit in the Fe(IV) intermediate observed during oxygen activation by taurine:alpha -ketoglutarate dioxygenase. J. Am. Chem. Soc.126, 8108–8109 (2004). ArticleCASPubMed Google Scholar
Johnson-Winters, K., Purpero, V.M., Kavana, M. & Moran, G.R. Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis. Biochemistry44, 7189–7199 (2005). ArticleCASPubMed Google Scholar
Galonic, D.P., Vaillancourt, F.H. & Walsh, C.T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc.128, 3900–3901 (2006). ArticleCASPubMed Google Scholar
Blasiak, L.C., Vaillancourt, F.H., Walsh, C.T. & Drennan, C.L. Crystal structure of the non-heme iron halogenase SyrB2 in syringomycin biosynthesis. Nature440, 368–371 (2006). ArticleCASPubMed Google Scholar
Galonic, D.P., Barr, E.W., Walsh, C.T., Bollinger, J.M. Jr. & Krebs, C. Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat. Chem. Biol.3, 113–116 (2007). ArticleCASPubMed Google Scholar
Fujimori, D.G. et al. Spectroscopic evidence for a high-spin Br-Fe(IV)-oxo intermediate in the alpha-ketoglutarate-dependent halogenase CytC3 from Streptomyces. J. Am. Chem. Soc.129, 13408–13409 (2007). ArticleCASPubMed Google Scholar
Fitzpatrick, P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem.68, 355–381 (1999). ArticleCASPubMed Google Scholar
Andersen, O.A., Stokka, A.J., Flatmark, T. & Hough, E. 2.0 Å resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-alanine or -norleucine: substrate specificity and molecular motions related to substrate binding. J. Mol. Biol.333, 747–757 (2003). ArticleCASPubMed Google Scholar
Pavon, J.A. & Fitzpatrick, P.F. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation. Biochemistry45, 11030–11037 (2006). ArticleCASPubMed Google Scholar
Eser, B.E. et al. Direct spectroscopic evidence for a high-spin Fe(IV) intermediate in tyrosine hydroxylase. J. Am. Chem. Soc.129, 11334–11335 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bassan, A., Blomberg, M.R.A. & Siegbahn, P.E.M. Mechanism of aromatic hydroxylation by an activated FeIV=O core in tetrahydrobiopterin-dependent hydroxylases. Chem. Eur. J.9, 4055–4067 (2003). ArticleCASPubMed Google Scholar
Koehntop, K.D., Emerson, J.P. & Que, L. Jr. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J. Biol. Inorg. Chem.10, 87–93 (2005). ArticleCASPubMed Google Scholar
Clifton, I.J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta -helix fold proteins. J. Inorg. Biochem.100, 644–669 (2006). ArticleCASPubMed Google Scholar
Baldwin, J.E. & Schofield, C. in Chemistry of β-Lactams (ed. Page, M.I.) 1–78 (Blackie, Glasgow, UK, 1992). Book Google Scholar
Roach, P.L. et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature387, 827–830 (1997). ArticleCASPubMed Google Scholar
Brown, C.D., Neidig, M.L., Neibergall, M.B., Lipscomb, J.D. & Solomon, E.I. VTVH-MCD and DFT studies of thiolate bonding to {FeNO}7/{FeO2}8 complexes of isopenicillin N synthase: substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes. J. Am. Chem. Soc.129, 7427–7438 (2007). ArticleCASPubMedPubMed Central Google Scholar
Liu, P. et al. Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme. Biochemistry42, 11577–11586 (2003). ArticleCASPubMed Google Scholar
Yan, F. et al. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues. Biochemistry46, 12628–12638 (2007). ArticleCASPubMed Google Scholar
Rocklin, A.M. et al. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc. Natl. Acad. Sci. USA96, 7905–7909 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rocklin, A.M., Kato, K., Liu, H.-w., Que, L. & Lipscomb, J.D. Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction. J. Biol. Inorg. Chem.9, 171–182 (2004). ArticleCASPubMed Google Scholar
Thrower, J., Mirica, L.M., McCusker, K.P. & Klinman, J.P. Mechanistic investigations of 1-aminocyclopropane 1-carboxylic acid oxidase with alternate cyclic and acyclic substrates. Biochemistry45, 13108–13117 (2006). ArticleCASPubMed Google Scholar
Orville, A.M. et al. Thiolate ligation of the active site Fe2+ of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys to Ser mutated enzymes. Biochemistry31, 4602–4612 (1992). ArticleCASPubMed Google Scholar
Chen, V.J. et al. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. J. Biol. Chem.264, 21677–21681 (1989). ArticleCASPubMed Google Scholar