Bacteria and host interactions in the gut epithelial barrier (original) (raw)
Kim, M. et al. Bacterial interactions with the host epithelium. Cell Host Microbe8, 20–35 (2010). ArticleCASPubMed Google Scholar
Galán, J.E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature444, 567–573 (2006). ArticlePubMedCAS Google Scholar
Yu, X.J., McGourty, K., Liu, M., Unsworth, K.E. & Holden, D.W. pH sensing by intracellular Salmonella induces effector translocation. Science328, 1040–1043 (2010). ArticleCASPubMedPubMed Central Google Scholar
McGhie, E.J., Brawn, L.C., Hume, P.J., Humphreys, D. & Koronakis, V. Salmonella takes control: effector-driven manipulation of the host. Curr. Opin. Microbiol.12, 117–124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2, 119–129 (2007). ArticleCASPubMed Google Scholar
Stecher, B. & Hardt, W.D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol.14, 82–91 (2011). ArticleCASPubMed Google Scholar
Keeney, K.M. & Finlay, B.B. Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr. Opin. Microbiol.14, 92–98 (2011). ArticlePubMedPubMed Central Google Scholar
Savage, D.C., Siegel, J.E., Snellen, J.E. & Whitt, D.D. Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl. Environ. Microbiol.42, 996–1001 (1981). ArticleCASPubMedPubMed Central Google Scholar
Chowdhury, S.R. et al. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. BMC Genomics8, 215 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature469, 543–547 (2011). This study shows that acetate produced by Bifidobacteria species prevents lethal infection and epithelial cell death induced by EHEC O157. ArticleCASPubMed Google Scholar
Maslowski, K.M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature461, 1282–1286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev.23, 366–384 (2010). ArticleCASPubMed Google Scholar
Raqib, R. et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl. Acad. Sci. USA103, 9178–9183 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol.10, 159–169 (2010). ArticleCASPubMed Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). ArticleCASPubMed Google Scholar
Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science331, 337–341 (2011). This study reports thatClostridiumspecies induce regulatory T cells and maintain immunological homeostasis via stimulating matrix metalloprotease-TGF-β signaling. ArticleCASPubMed Google Scholar
Willing, B.P., Russell, S.L. & Finlay, B.B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol.9, 233–243 (2011). ArticleCASPubMed Google Scholar
Garner, C.D. et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar typhimurium murine model of infection. Infect. Immun.77, 2691–2702 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y., Suyemoto, M., Garner, C.D., Cicconi, K.M. & Altier, C. Formate acts as a diffusible signal to induce Salmonella invasion. J. Bacteriol.190, 4233–4241 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5, 2177–2189 (2007). This report shows the benefit of intestinal inflammation in promoting the colonization of bacterial pathogens. The authors showed that S. Typhimurium-induced host inflammation changes the composition and suppresses the growth of the microbiota, thereby overcoming colonization resistance. ArticleCASPubMed Google Scholar
Lawley, T.D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun.76, 403–416 (2008). ArticleCASPubMed Google Scholar
Winter, S.E. et al. Gut inflammation provides a respiratory electron acceptor for SalmonellaNature467, 426–429 (2010). This study, in addition to ref. 23, shows the benefits of intestinal inflammation during S. Typhimurium infection. S. Typhimurium use tetrathionate, which is produced as a result of inflammation, as an electron acceptor and gains a growth advantage to overcome the host microbiota. ArticleCASPubMedPubMed Central Google Scholar
McGuckin, M.A., Lindén, S.K., Sutton, P. & Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol.9, 265–278 (2011). This review explores the role of mucin as a barrier to bacterial infection. It also describes the interaction between bacterial pathogens and the mucus layer. ArticleCASPubMed Google Scholar
Dharmani, P., Srivastava, V., Kissoon-Singh, V. & Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun.1, 123–135 (2009). ArticleCASPubMed Google Scholar
Li, J.D. et al. Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for _Pseudomonas aeruginosa_-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA95, 5718–5723 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lemjabbar, H. & Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat. Med.8, 41–46 (2002). ArticleCASPubMed Google Scholar
McAuley, J.L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest.117, 2313–2324 (2007). ArticleCASPubMedPubMed Central Google Scholar
McGuckin, M.A. et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology133, 1210–1218 (2007). ArticleCASPubMed Google Scholar
Lindén, S.K. et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog.5, e1000617 (2009). This study shows the importance of MUC1 in limitingH. pyloricolonization. The authors found that mucin acts as decoy that is released from the epithelial surface in response to bacterial binding, thereby preventing prolonged infection. ArticlePubMedPubMed CentralCAS Google Scholar
Tu, Q.V., McGuckin, M.A. & Mendz, G.L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol.57, 795–802 (2008). ArticleCASPubMed Google Scholar
Ramos, H.C., Rumbo, M. & Sirard, J.C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol.12, 509–517 (2004). ArticleCASPubMed Google Scholar
Henderson, I.R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J.P. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coliInfect. Immun.67, 5587–5596 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grys, T.E., Siegel, M.B., Lathem, W.W. & Welch, R.A. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect. Immun.73, 1295–1303 (2005). ArticleCASPubMedPubMed Central Google Scholar
Silva, A.J., Pham, K. & Benitez, J.A. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio choleraeMicrobiology149, 1883–1891 (2003). ArticleCASPubMed Google Scholar
Szabady, R.L., Yanta, J.H., Halladin, D.K., Schofield, M.J. & Welch, R.A. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology157, 516–525 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mantle, M. & Rombough, C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocoliticaInfect. Immun.61, 4131–4138 (1993). ArticleCASPubMedPubMed Central Google Scholar
Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell84, 345–357 (1996). ArticleCASPubMed Google Scholar
Popoff, M.R. & Geny, B. Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim. Biophys. Acta1788, 797–812 (2009). ArticleCASPubMed Google Scholar
Wang, F. et al. Interferon-g and tumor necrosis factor-a synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol.166, 409–419 (2005). ArticleCASPubMedPubMed Central Google Scholar
Graham, W.V. et al. Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. J. Biol. Chem.281, 26205–26215 (2006). ArticleCASPubMed Google Scholar
Al-Sadi, R., Ye, D., Dokladny, K. & Ma, T.Y. Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. J. Immunol.180, 5653–5661 (2008). ArticleCASPubMed Google Scholar
Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol.9, 799–809 (2009). ArticleCASPubMed Google Scholar
Guttman, J.A. & Finlay, B.B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta1788, 832–841 (2009). This review highlights the role of tight junctions as a component of the epithelial barrier and describes how bacterial pathogens target and alter tight junctions during infection. ArticleCASPubMed Google Scholar
Croxen, M.A. & Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol.8, 26–38 (2010). ArticleCASPubMed Google Scholar
Alto, N.M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell124, 133–145 (2006). ArticleCASPubMed Google Scholar
Arbeloa, A. et al. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell. Microbiol.10, 1429–1441 (2008). ArticleCASPubMedPubMed Central Google Scholar
Simovitch, M. et al. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell. Microbiol.12, 489–505 (2010). ArticleCASPubMed Google Scholar
Thanabalasuriar, A. et al. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coliCell. Microbiol.12, 31–41 (2010). ArticleCASPubMed Google Scholar
Flynn, A.N. & Buret, A.G. Tight junctional disruption and apoptosis in an in vitro model of Citrobacter rodentium infection. Microb. Pathog.45, 98–104 (2008). ArticleCASPubMed Google Scholar
Babbin, B.A., Sasaki, M., Gerner-Schmidt, K.W., Nusrat, A. & Klapproth, J.M. The bacterial virulence factor lymphostatin compromises intestinal epithelial barrier function by modulating rho GTPases. Am. J. Pathol.174, 1347–1357 (2009). ArticleCASPubMedPubMed Central Google Scholar
Casselli, T., Lynch, T., Southward, C.M., Jones, B.W. & DeVinney, R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun.76, 2202–2211 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yarbrough, M.L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323, 269–272 (2009). This study shows that VopS has AMPylation activity and modifies conserved threonine residues in Rho GTPase, thereby disrupting Rho GTPase signaling and regulating actin cytoskeleton remodeling. ArticleCASPubMed Google Scholar
Boyle, E.C., Brown, N.F. & Finlay, B.B. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell. Microbiol.8, 1946–1957 (2006). ArticleCASPubMed Google Scholar
Bruno, V.M. et al. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog.5, e1000538 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Müller, A.J.D. et al. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe20, 125–136 (2009). ArticleCAS Google Scholar
Fischer, W., Prassl, S. & Haas, R. Virulence mechanisms and persistence strategies of the human gastric pathogen Helicobacter pyloriCurr. Top. Microbiol. Immunol.337, 129–171 (2009). CASPubMed Google Scholar
Bagnoli, F., Buti, L., Tompkins, L., Covacci, A. & Amieva, M.R. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl. Acad. Sci. USA102, 16339–16344 (2005). ArticleCASPubMedPubMed Central Google Scholar
Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature447, 330–333 (2007). ArticleCASPubMed Google Scholar
Papini, E. et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest.102, 813–820 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wroblewski, L.E. et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology136, 236–246 (2009). ArticleCASPubMed Google Scholar
Lapointe, T.K., O'Connor, P.M., Jones, N.L., Menard, D. & Buret, A.G. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell. Microbiol.12, 692–703 (2010). ArticleCASPubMed Google Scholar
Madara, J.L. Warner-Lambert/Parke-Davis Award lecture. Pathobiology of the intestinal epithelial barrier. Am. J. Pathol.137, 1273–1281 (1990). CASPubMedPubMed Central Google Scholar
Watson, A.J., Duckworth, C.A., Guan, Y. & Montrose, M.H. Mechanisms of epithelial cell shedding in the Mammalian intestine and maintenance of barrier function. Ann. NY Acad. Sci.1165, 135–142 (2009). ArticlePubMed Google Scholar
Piguet, P.F., Vesin, C., Donati, Y. & Barazzone, C. TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab. Invest.79, 495–500 (1999). CASPubMed Google Scholar
Marchiando, A.M. et al. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology140, 1208–1218 (2011). ArticleCASPubMed Google Scholar
Ashida, H. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. (in the press).
Carneiro, L.A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyeloid cells. Cell Host Microbe5, 123–136 (2009). ArticleCASPubMed Google Scholar
Paesold, G., Guiney, D.G., Eckmann, L. & Kagnoff, M.F. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for _Salmonella_-induced apoptosis in intestinal epithelial cells. Cell. Microbiol.4, 771–781 (2002). ArticleCASPubMed Google Scholar
Schauser, K. & Larsson, L.I. Programmed cell death and cell extrusion in rat duodenum: a study of expression and activation of caspase-3 in relation to C-jun phosphorylation, DNA fragmentation and apoptotic morphology. Histochem. Cell Biol.124, 237–243 (2005). ArticleCASPubMed Google Scholar
Jones, R.M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe3, 233–244 (2008). ArticleCASPubMed Google Scholar
Du, F. & Galán, J.E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog.5, e1000595 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Knodler, L.A., Finlay, B.B. & Steele-Mortimer, O. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem.280, 9058–9064 (2005). ArticleCASPubMed Google Scholar
Kum, W.W., Lo, B.C., Yu, H.B. & Finlay, B.B. Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis. Infect. Immun.79, 2554–2566 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nougayrède, J.P. & Donnenberg, M.S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol.6, 1097–1111 (2004). ArticlePubMedCAS Google Scholar
Nagai, T., Abe, A. & Sasakawa, C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem.280, 2998–3011 (2005). ArticleCASPubMed Google Scholar
Nougayrède, J.P., Foster, G.H. & Donnenberg, M.S. Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell. Microbiol.9, 680–693 (2007). ArticlePubMedCAS Google Scholar
Ki, M.R. et al. Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.294, G635–G647 (2008). ArticleCASPubMed Google Scholar
Amcheslavsky, A., Jiang, J. & Ip, Y.T. Tissue damage-induced intestinal stem cell division in DrosophilaCell Stem Cell4, 49–61 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pitsouli, C., Apidianakis, Y. & Perrimon, N. Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe6, 301–307 (2009). ArticleCASPubMed Google Scholar
Sellin, J.H., Wang, Y., Singh, P. & Umar, S. β-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia. Exp. Cell Res.315, 97–109 (2009). ArticleCASPubMed Google Scholar
Mimuro, H. et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe2, 250–263 (2007). ArticleCASPubMed Google Scholar
Wessler, S. & Backert, S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pyloriTrends Microbiol.16, 397–405 (2008). ArticleCASPubMed Google Scholar
Chang, Y.J. et al. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell. Microbiol.8, 1740–1752 (2006). ArticleCASPubMed Google Scholar
Iwai, H. et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell130, 611–623 (2007). ArticleCASPubMed Google Scholar
Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science329, 1215–1218 (2010). This study reveals that Cif deaminates NEDD8 and interferes with its function, resulting in cell cycle arrest. ArticleCASPubMedPubMed Central Google Scholar
Jubelin, G. et al. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog.6, e1001128 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Morikawa, H. et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem. Biophys. Res. Commun.401, 268–274 (2010). ArticleCASPubMed Google Scholar
Samba-Louaka, A. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol.10, 2496–2508 (2008). ArticleCASPubMed Google Scholar
Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl. Acad. Sci. USA106, 3716–3721 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hemrajani, C. et al. NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection. Proc. Natl. Acad. Sci. USA107, 3129–3134 (2010). ArticleCASPubMedPubMed Central Google Scholar
Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med.10, S122–S129 (2004). ArticleCASPubMed Google Scholar
Marra, A. Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. Drugs R D.7, 1–16 (2006). ArticleCASPubMed Google Scholar
Nordfelth, R., Kauppi, A.M., Norberg, H.A., Wolf-Watz, H. & Elofsson, M. Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun.73, 3104–3114 (2005). ArticleCASPubMedPubMed Central Google Scholar
Negrea, A. et al. Salicylidene acylhydrazides that affect type III protein secretion in Salmonella enterica serovar typhimurium. Antimicrob. Agents Chemother.51, 2867–2876 (2007). ArticleCASPubMedPubMed Central Google Scholar
Veenendaal, A.K., Sundin, C. & Blocker, A.J. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J. Bacteriol.191, 563–570 (2009). ArticleCASPubMed Google Scholar