Direct and selective small-molecule activation of proapoptotic BAX (original) (raw)
Danial, N.N. & Korsmeyer, S.J. Cell death: critical control points. Cell116, 205–219 (2004). CASPubMed Google Scholar
Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science275, 983–986 (1997). ArticleCASPubMed Google Scholar
Nguyen, M. et al. Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1–mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA104, 19512–19517 (2007). ArticleCASPubMedPubMed Central Google Scholar
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435, 677–681 (2005). ArticleCASPubMed Google Scholar
Wang, G. et al. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J. Med. Chem.49, 6139–6142 (2006). ArticleCASPubMed Google Scholar
Stewart, M.L., Fire, E., Keating, A.E. & Walensky, L.D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol.6, 595–601 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wilson, W.H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol.11, 1149–1159 (2010). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, S.M. et al. Phase I study of obatoclax mesylate (GX15–070), a small molecule pan–Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood113, 299–305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gandhi, L. et al. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol.29, 909–916 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gavathiotis, E., Reyna, D.E., Davis, M.L., Bird, G.H. & Walensky, L.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell40, 481–492 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, X., Kim, C.N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86, 147–157 (1996). ArticleCASPubMed Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997). ArticleCASPubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000). ArticleCASPubMed Google Scholar
Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.9, 47–59 (2008). ArticleCASPubMed Google Scholar
Walensky, L.D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell24, 199–210 (2006). ArticleCASPubMed Google Scholar
Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.47, 1739–1749 (2004). ArticleCASPubMed Google Scholar
Friesner, R.A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.49, 6177–6196 (2006). ArticleCASPubMed Google Scholar
Hsu, Y.T. & Youle, R.J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem.272, 13829–13834 (1997). ArticleCASPubMed Google Scholar
Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev.14, 2060–2071 (2000). CASPubMedPubMed Central Google Scholar
Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L. & Korsmeyer, S.J. BID: a novel BH3 domain-only death agonist. Genes Dev.10, 2859–2869 (1996). ArticleCASPubMed Google Scholar
García-Sáez, A.J., Mingarro, I., Perez-Paya, E. & Salgado, J. Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry43, 10930–10943 (2004). ArticlePubMed Google Scholar
Muchmore, S.W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature381, 335–341 (1996). ArticleCASPubMed Google Scholar
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res.68, 3421–3428 (2008). ArticleCASPubMed Google Scholar
Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science330, 1390–1393 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cartron, P.F. et al. The first α helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol. Cell16, 807–818 (2004). ArticleCASPubMed Google Scholar
Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol.8, 1348–1358 (2006). ArticleCASPubMed Google Scholar
Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell36, 487–499 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell17, 525–535 (2005). ArticleCASPubMed Google Scholar
Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell111, 331–342 (2002). ArticleCASPubMed Google Scholar
Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell2, 183–192 (2002). ArticleCASPubMed Google Scholar
Lovell, J.F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell135, 1074–1084 (2008). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc. Natl. Acad. Sci. USA102, 11272–11277 (2005). ArticleCASPubMedPubMed Central Google Scholar
Roberts, A.W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol.30, 488–496 (2012). ArticleCASPubMed Google Scholar
Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell9, 351–365 (2006). ArticleCASPubMed Google Scholar
Walensky, L.D. From mitochondrial biology to magic bullet: navitoclax disarms BCL-2 in chronic lymphocytic leukemia. J. Clin. Oncol.30, 554–557 (2012). ArticleCASPubMed Google Scholar
Walensky, L.D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci.36, 642–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Irwin, J.J. & Shoichet, B.K. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.45, 177–182 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pitter, K., Bernal, F., Labelle, J. & Walensky, L.D. Dissection of the BCL-2 family signaling network with stabilized α-helices of BCL-2 domains. Methods Enzymol.446, 387–408 (2008). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, M., Youle, R.J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell103, 645–654 (2000). ArticleCASPubMed Google Scholar
DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, 2002).
Yethon, J.A., Epand, R.F., Leber, B., Epand, R.M. & Andrews, D.W. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J. Biol. Chem.278, 48935–48941 (2003). ArticleCASPubMed Google Scholar