Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro (original) (raw)

References

  1. Klausner, R.D., Donaldson, J.G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).
    Article CAS PubMed Google Scholar
  2. Feng, Y. et al. Exo1: A new chemical inhibitor of the exocytic pathway. Proc. Natl. Acad. Sci. USA 100, 6469–6474 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  3. Feng, Y. et al. Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 5, 596–601 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  4. Wang, B., Wylie, F.G., Teasdale, R.D. & Stow, J.L. Polarized trafficking of E-cadherin is regulated by Rac1 and Cdc42 in Madin-Darby canine kidney cells. Am. J. Physiol. Cell Physiol. 288, C1411–C1419 (2005).
    Article CAS PubMed Google Scholar
  5. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat. Cell Biol. 1, 8–13 (1999).
    Article CAS PubMed Google Scholar
  6. Camera, P. et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat. Cell Biol. 5, 1071–1078 (2003).
    Article CAS PubMed Google Scholar
  7. Bishop, A.L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  8. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).
    Article CAS PubMed Google Scholar
  9. Pelish, H.E., Westwood, N.J., Feng, Y., Kirchhausen, T. & Shair, M.D. Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J. Am. Chem. Soc. 123, 6740–6741 (2001).
    Article CAS PubMed Google Scholar
  10. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).
    Article CAS PubMed Google Scholar
  11. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  12. Ma, L., Cantley, L.C., Janmey, P.A. & Kirschner, M.W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  13. Ho, H.Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203–216 (2004).
    Article CAS PubMed Google Scholar
  14. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).
    Article CAS PubMed Google Scholar
  15. Cooper, J.A., Walker, S.B. & Pollard, T.D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization.J. Muscle Res. Cell Motil. 4, 253–262 (1983).
    Article CAS PubMed Google Scholar
  16. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signaling. Cell. Signal. 11, 545–554 (1999).
    Article CAS PubMed Google Scholar
  17. Benard, V., Bohl, B.P. & Bokoch, G.M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).
    Article CAS PubMed Google Scholar
  18. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP2 density. Mol. Cell 17, 181–191 (2005).
    Article CAS PubMed Google Scholar
  19. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 275, 25299–25307 (2000).
    Article CAS PubMed Google Scholar
  20. Schacht, J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J. Lipid Res. 19, 1063–1067 (1978).
    CAS PubMed Google Scholar
  21. Lin, H.C., Barylko, B., Achiriloaie, M. & Albanesi, J.P. Phosphatidylinositol (4,5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. J. Biol. Chem. 272, 25999–26004 (1997).
    Article CAS PubMed Google Scholar
  22. Jost, M., Simpson, F., Kavran, J.M., Lemmon, M.A. & Schmid, S.L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 (1998).
    Article CAS PubMed Google Scholar
  23. Erickson, J.W., Zhang, C., Kahn, R.A., Evans, T. & Cerione, R.A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus.J. Biol. Chem. 271, 26850–26854 (1996).
    Article CAS PubMed Google Scholar
  24. Fucini, R.V., Chen, J., Sharma, C., Kessels, M.M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  25. Wu, W.J., Erickson, J.W., Lin, R. & Cerione, R.A. The gamma-subunit of the coatomer complex binds to Cdc42 to mediate transformation.Nature 405, 800–804 (2000).
    Article CAS PubMed Google Scholar
  26. Chen, J. et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J. Cell Biol. 169, 383–389 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  27. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. Cdc42 regulates the exit of apical and basolateral proteins from the _trans_-Golgi network. EMBO J. 20, 2171–2179 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498 (2001).
    Article CAS PubMed Google Scholar
  29. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).
    Article CAS PubMed Google Scholar
  30. Hoffman, G.R., Nassar, N. & Cerione, R.A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).
    Article CAS PubMed Google Scholar
  31. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).
    Article CAS PubMed Google Scholar
  32. Mansour, S.J. et al. p200 Arf-GEP1: a Golgi-localized guanine nucleotide exchange protein whose Sec7 domain is targeted by the drug brefeldin A.Proc. Natl. Acad. Sci. USA 96, 7968–7973 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  33. Keep, N.H. et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).
    Article CAS PubMed Google Scholar
  34. Nobes, C.D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
    Article CAS PubMed Google Scholar
  35. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004).
    Article CAS PubMed Google Scholar
  36. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by Cdc42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  37. Vasudevan, A. et al. Potent, highly selective, and non-thiol inhibitors of protein geranylgeranyltransferase-I. J. Med. Chem. 42, 1333–1340 (1999).
    Article CAS PubMed Google Scholar
  38. Gao, Y., Dickerson, J.B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl. Acad. Sci. USA 101, 7618–7623 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  39. Cole, N.B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1–15 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  40. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  41. Peterson, J.R., Lokey, R.S., Mitchison, T.J. & Kirschner, M.W. A chemical inhibitor of N-WASP reveals a new mechanism of targeting protein interactions. Proc. Natl. Acad. Sci. USA 98, 10624–10629 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  42. Gallusser, A. & Kirchhausen, T. The beta 1 and beta 2 subunits of the AP complexes are the clathrin coat assembly components. EMBO J. 12, 5237–5244 (1993).
    Article CAS PubMed PubMed Central Google Scholar

Download references