SNP and haplotype mapping for genetic analysis in the rat (original) (raw)

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jacob, H.J. & Kwitek, A.E. Rat genetics: attaching physiology and pharmacology to the genome. Nat. Rev. Genet. 3, 33–42 (2002).
    Article CAS Google Scholar
  2. Bihoreau, M.T. et al. A linkage map of the rat genome derived from three F2 crosses. Genome Res. 7, 434–440 (1997).
    Article CAS Google Scholar
  3. Guryev, V., Berezikov, E., Malik, R., Plasterk, R.H. & Cuppen, E. Single nucleotide polymorphisms associated with rat expressed sequences. Genome Res. 14, 1438–1443 (2004).
    Article CAS Google Scholar
  4. Zimdahl, H. et al. A SNP map of the rat genome generated from cDNA sequences. Science 303, 807 (2004).
    Article CAS Google Scholar
  5. Thomas, M.A., Chen, C.F., Jensen-Seaman, M.I., Tonellato, P.J. & Twigger, S.N. Phylogenetics of rat inbred strains. Mamm. Genome 14, 61–64 (2003).
    Article Google Scholar
  6. Kurtz, T.W. & Morris, R.C. Jr. Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension 10, 127–131 (1987).
    Article CAS Google Scholar
  7. Kurtz, T.W., Montano, M., Chan, L. & Kabra, P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension 13, 188–192 (1989).
    Article CAS Google Scholar
  8. Gauguier, D. The rat as a model physiological system. In Encyclopedia of Genetics vol. 3 (eds. Jorde, L.B., Little, P., Dunn, M. & Subramaniam, S.) 1154–1171 (Wiley, London, 2006).
    Google Scholar
  9. Arbiza, L. et al. Selective pressures at a codon-level predict deleterious mutations in human disease genes. J. Mol. Biol. 358, 1390–1404 (2006).
    Article CAS Google Scholar
  10. Goñi, J.R., de la Cruz, X. & Orozco, M. Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res. 32, 354–360 (2004).
    Article Google Scholar
  11. Hedrich, H.J. (ed.) Genetic Monitoring of Inbred Strains of Rat (Gustav Fischer, Stuttgart, New York, 1990).
    Google Scholar
  12. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
    Article CAS Google Scholar
  13. Mashimo, T. et al. A set of highly informative rat simple sequence length polymorphism (SSLP) markers and genetically defined rat strains. BMC Genet. 7, 19 (2006).
    Article Google Scholar
  14. Smits, B.M. et al. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics 6, 170 (2005).
    Article Google Scholar
  15. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).
    Article CAS Google Scholar
  16. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
    Article CAS Google Scholar
  17. Wade, C.M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002).
    Article CAS Google Scholar
  18. Frazer, K.A. et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1053 (2007).
    Article CAS Google Scholar
  19. Yang, H., Bell, T.A., Churchill, G.A. & Pardo-Manuel de Villena, F. On the subspecific origin of the laboratory mouse. Nat. Genet. 39, 1100–1107 (2007).
    Article CAS Google Scholar
  20. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).
    Article CAS Google Scholar
  21. Guryev, V. et al. Haplotype block structure is conserved across mammals. PLoS Genet. 2, e121 (2006).
    Article Google Scholar
  22. Jensen-Seaman, M.I. et al. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 14, 528–538 (2004).
    Article CAS Google Scholar
  23. Grupe, A. et al. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918 (2001).
    Article CAS Google Scholar
  24. Payseur, B.A. & Place, M. Prospects for association mapping in classical inbred mouse strains. Genetics 175, 1999–2008 (2007).
    Article CAS Google Scholar
  25. Gauguier, D. et al. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat. Genet. 12, 38–43 (1996).
    Article CAS Google Scholar
  26. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).
    Article CAS Google Scholar
  27. Dumas, M.E. et al. Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat. Genet. 39, 666–672 (2007).
    Article CAS Google Scholar
  28. Mashimo, T., Voigt, B., Kuramoto, T. & Serikawa, T. Rat Phenome Project: the untapped potential of existing rat strains. J. Appl. Physiol. 98, 371–379 (2005).
    Article Google Scholar
  29. Ihaka, R. & Gentleman, R.R. A language for data analysis and graphics. J. Comput. Graph. Statist. 5, 299–314 (1996).
    Google Scholar
  30. Broman, K.W. The genomes of recombinant inbred lines. Genetics 169, 1133–1146 (2005).
    Article CAS Google Scholar
  31. Shisa, H. et al. The LEXF: a new set of rat recombinant inbred strains between LE/Stm and F344. Mamm. Genome 8, 324–327 (1997).
    Article CAS Google Scholar
  32. Fujiyama, A. et al. Construction and analysis of a human-chimpanzee comparative clone map. Science 295, 131–134 (2002).
    Article Google Scholar
  33. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).
    Article CAS Google Scholar
  34. Oliphant, A., Barker, D.L., Stuelpnagel, J.R. & Chee, M.S. BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 32 (suppl.), 56–58, 60–61 (2002).
    Google Scholar
  35. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).
    Article CAS Google Scholar
  36. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).
    Article CAS Google Scholar
  37. Vlieghe, D. et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34, D95–D97 (2006).
    Article CAS Google Scholar
  38. Blanco, E., Messeguer, X., Smith, T.F. & Guigo, R. Transcription factor map alignment of promoter regions. PLOS Comput. Biol. 2, e49 (2006).
    Article Google Scholar
  39. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).
    Article CAS Google Scholar
  40. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, W193–W200 (2007).
    Article Google Scholar

Download references

Acknowledgements

This work was supported by European Union grants LSGH-2004-005235 and LSHG-CT-2005-019015. We acknowledge funding from the National Genome Research Network of the German Ministry of Science and Education. We thank all of the technical staff of the Sequencing Technology Team at the RIKEN Genomic Sciences Center for their assistance. Part of this work was supported by the National BioResource Project of the Ministry of Education, Culture, Sports, Science and Technology of Japan. D.G. is supported by a Wellcome Trust Senior Fellowship in Basic Biomedical Science (057733/Z/99/A). M.-T.B. and D.G. acknowledge support from the Wellcome Cardiovascular Functional Genomics Initiative (066780/Z/01/Z). M. Pravenec is supported by the Howard Hughes Medical Institute and by the Grant Agency of the Czech Republic. M. Pravenec and V.K. are supported by grants from the Ministry of Education of the Czech Republic.

Author information

Author notes

  1. Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.

Authors and Affiliations

  1. Max-Delbrück Center for Molecular Medicine, Robert-Rossle-Straße 10, Berlin, 13125, Germany
    Kathrin Saar, Matthias Heinig, Oliver Hummel, Young-Ae Lee, Giannino Patone, Herbert Schulz, Heike Zimdahl & Norbert Hubner
  2. Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, Berlin, 14195, Germany
    Alfred Beck, Sven Klages, Michael Kube, Heiner Kuhl & Richard Reinhardt
  3. Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, Oxford, UK
    Marie-Thérèse Bihoreau, Denise Brocklebank, Dominique Gauguier & Richard Mott
  4. European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
    Ewan Birney, Yuan Chen & Paul Flicek
  5. Hubrecht Institute, Uppsalalaan 8, CT, 3584, Utrecht, The Netherlands
    Edwin Cuppen & Victor Guryev
  6. Commissariat à l'Énergie Atomique, Institut de Génomique, Centre National de Génotypage, 2 rue Gaston Crémieux CP 5721, Evry Cedex, 91 057, France
    Stephanie Demonchy, Mario Foglio, Doris Lechner, G Mark Lathrop, Jeanne-Antide Perrier-Cornet, Michal Pravenec & Diana Zelenika
  7. Department of Bioinformatics, and Functional Genomics Node, Centro de Investigación Príncipe Felipe, Avenida Autopista del Saler 16, Valencia, 46012, Spain
    Joaquin Dopazo & Ignacio Medina
  8. RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Kanagawa, Japan
    Asao Fujiyama, Ivo G Gut, Yoko Kuroki, Yoshiyuki Sakaki, Shouji Tatsumoto & Atsushi Toyoda
  9. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, 101-8430, Tokyo, Japan
    Asao Fujiyama
  10. Center for Genomic Regulation, C/Dr. Aiguader 88, Barcelona Biomedical Research Park Building, Barcelona, 08003, Catalonia, Spain
    Roderic Guigo & Nuria Lopez-Bigas
  11. Experimental and Health Science Department, Universitat Pompeu Fabra, C/Dr. Aiguader 88, Barcelona Biomedical Research Park Building, Barcelona, 08003, Catalonia, Spain
    Roderic Guigo, Nuria Lopez-Bigas & Medya Shikhagaie
  12. Genome Analysis, Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstraße 11, Jena, 07745, Germany
    Niels Jahn, Vladimir Kren, Matthias Platzer, Markus Schilhabel & Stefan Taudien
  13. Institute of Biology and Medical Genetics, First Medical Faculty, Charles University, Albertov 4, Prague 2, 12800, Czech Republic
    Vladimir Kren
  14. Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, 606-8501, Kyoto, Japan
    Takashi Kuramoto, Tomoji Mashimo, Tadao Serikawa & Birger Voigt
  15. Pediatric Pneumology and Immunology, Charite, Campus Virchow Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany
    Young-Ae Lee

Consortia

The STAR Consortium

Corresponding author

Correspondence toNorbert Hubner.

Supplementary information

Rights and permissions

About this article

Cite this article

The STAR Consortium. SNP and haplotype mapping for genetic analysis in the rat.Nat Genet 40, 560–566 (2008). https://doi.org/10.1038/ng.124

Download citation