A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration (original) (raw)
Cardoso, W.V. Molecular regulation of lung development. Annu. Rev. Physiol.63, 471–494 (2001). ArticleCASPubMed Google Scholar
Cardoso, W.V. & Lu, J. Regulation of early lung morphogenesis: questions, facts and controversies. Development133, 1611–1624 (2006). ArticleCASPubMed Google Scholar
Minoo, P., Su, G., Drum, H., Bringas, P. & Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev. Biol.209, 60–71 (1999). ArticleCASPubMed Google Scholar
Wan, H. et al. Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem.280, 13809–13816 (2005). ArticleCASPubMed Google Scholar
Yang, H., Lu, M.M., Zhang, L., Whitsett, J.A. & Morrisey, E.E. GATA6 regulates differentiation of distal lung epithelium. Development129, 2233–2246 (2002). ArticleCASPubMed Google Scholar
Blenkinsopp, W.K. Proliferation of respiratory tract epithelium in the rat. Exp. Cell Res.46, 144–154 (1967). ArticleCASPubMed Google Scholar
Giangreco, A., Reynolds, S.D. & Stripp, B.R. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am. J. Pathol.161, 173–182 (2002). ArticlePubMedPubMed Central Google Scholar
Rawlins, E.L. & Hogan, B.L. Epithelial stem cells of the lung: privileged few or opportunities for many? Development133, 2455–2465 (2006). ArticleCASPubMed Google Scholar
Kim, C.F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell121, 823–835 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. et al. GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development134, 189–198 (2007). ArticleCASPubMed Google Scholar
Lepore, J.J. et al. GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J. Clin. Invest.116, 929–939 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shu, W. et al. Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev. Biol.283, 226–239 (2005). ArticleCASPubMed Google Scholar
Perl, A.K., Tichelaar, J.W. & Whitsett, J.A. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res.11, 21–29 (2002). ArticleCASPubMed Google Scholar
Tichelaar, J.W., Lu, W. & Whitsett, J.A. Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J. Biol. Chem.275, 11858–11864 (2000). ArticleCASPubMed Google Scholar
Li, H., Malbon, C.C. & Wang, H.Y. Gene profiling of Frizzled-1 and Frizzled-2 signaling: expression of G-protein-coupled receptor chimeras in mouse F9 teratocarcinoma embryonal cells. Mol. Pharmacol.65, 45–55 (2004). ArticleCASPubMed Google Scholar
Ishitani, T. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol.23, 131–139 (2003). ArticleCASPubMedPubMed Central Google Scholar
Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3–independent β-catenin degradation. J. Cell Biol.162, 899–908 (2003). ArticleCASPubMedPubMed Central Google Scholar
Torres, M.A. et al. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol.133, 1123–1137 (1996). ArticleCASPubMed Google Scholar
Cohen, E.D. et al. Wnt/β-catenin signaling promotes expansion of Isl-1–positive cardiac progenitor cells through regulation of FGF signaling. J. Clin. Invest.117, 1794–1804 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yokoyama, H., Ogino, H., Stoick-Cooper, C.L., Grainger, R.M. & Moon, R.T. Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev. Biol.306, 170–178 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stoick-Cooper, C.L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development134, 479–489 (2007). ArticleCASPubMed Google Scholar
Fathke, C. et al. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol.7, 4 (2006). ArticlePubMedPubMed Central Google Scholar
Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA100, 3299–3304 (2003). ArticleCASPubMed Google Scholar
Plopper, C.G., Suverkropp, C., Morin, D., Nishio, S. & Buckpitt, A. Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. J. Pharmacol. Exp. Ther.261, 353–363 (1992). CASPubMed Google Scholar
Iwanaga, K. et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res.68, 1119–1127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yin, Z. et al. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am. J. Physiol. Lung Cell. Mol. Physiol.291, L191–L199 (2006). ArticleCASPubMed Google Scholar
Liu, C., Morrisey, E.E. & Whitsett, J.A. GATA-6 is required for maturation of the lung in late gestation. Am. J. Physiol. Lung Cell. Mol. Physiol.283, L468–L475 (2002). ArticleCASPubMed Google Scholar
Weidenfeld, J., Shu, W., Zhang, L., Millar, S.E. & Morrisey, E.E. The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J. Biol. Chem.277, 21061–21070 (2002). ArticleCASPubMed Google Scholar
Bruno, M.D., Korfhagen, T.R., Liu, C., Morrisey, E.E. & Whitsett, J.A. GATA-6 activates transcription of surfactant protein A. J. Biol. Chem.275, 1043–1049 (2000). ArticleCASPubMed Google Scholar
Ahumada, A. et al. Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science298, 2006–2010 (2002). ArticleCASPubMed Google Scholar
Kuhl, M., Sheldahl, L.C., Malbon, C.C. & Moon, R.T. Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem.275, 12701–12711 (2000). ArticleCASPubMed Google Scholar
Mucenski, M.L. et al. Beta-catenin regulates differentiation of respiratory epithelial cells in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol.289, L971–L979 (2005). ArticleCASPubMed Google Scholar
Okubo, T. & Hogan, B.L. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J. Biol.3, 11 (2004). ArticlePubMedPubMed Central Google Scholar
Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell10, 615–624 (2006). ArticleCASPubMed Google Scholar
Morrisey, E.E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev.12, 3579–3590 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ralston, A. & Rossant, J. Genetic regulation of stem cell origins in the mouse embryo. Clin. Genet.68, 106–112 (2005). ArticleCASPubMed Google Scholar
Lin, L. et al. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc. Natl. Acad. Sci. USA104, 9313–9318 (2007). ArticleCASPubMed Google Scholar
Besson, A. et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev.21, 1731–1746 (2007). ArticleCASPubMedPubMed Central Google Scholar
Davé, V. et al. Conditional deletion of Pten causes bronchiolar hyperplasia. Am. J. Respir. Cell Mol. Biol.38, 337–345 (2007). ArticlePubMedPubMed Central Google Scholar
Ventura, J.J. et al. p38α MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat. Genet.39, 750–758 (2007). ArticleCASPubMed Google Scholar
Yanagi, S. et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J. Clin. Invest.117, 2929–2940 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development128, 1253–1264 (2001). CASPubMed Google Scholar
Iwanaga, K. et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res.68, 1119–1127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morrisey, E.E., Ip, H.S., Lu, M.M. & Parmacek, M.S. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol.177, 309–322 (1996). ArticleCASPubMed Google Scholar
Shu, W., Jiang, Y.Q., Lu, M.M. & Morrisey, E.E. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development129, 4831–4842 (2002). CASPubMed Google Scholar
Lepore, J.J., Cappola, T.P., Mericko, P.A., Morrisey, E.E. & Parmacek, M.S. GATA-6 regulates genes promoting synthetic functions in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol.25, 309–314 (2005). ArticleCASPubMed Google Scholar
Shu, W., Yang, H., Zhang, L., Lu, M.M. & Morrisey, E.E. Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. J. Biol. Chem.276, 27488–27497 (2001). ArticleCASPubMed Google Scholar