Seven new loci associated with age-related macular degeneration (original) (raw)

Accession codes

Accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Swaroop, A., Chew, E.Y., Rickman, C.B. & Abecasis, G.R. Unravelling a late-onset multifactorial disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genomics Hum. Genet. 10, 19–43 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  2. Seddon, J.M., Cote, J., Page, W.F., Aggen, S.H. & Neale, M.C. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. Arch. Ophthalmol. 123, 321–327 (2005).
    Article PubMed Google Scholar
  3. Friedman, D.S. et al. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol. 122, 564–572 (2004).
    Article PubMed Google Scholar
  4. Edwards, A.O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).
    Article CAS PubMed Google Scholar
  5. Haines, J.L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).
    Article CAS PubMed Google Scholar
  6. Klein, R.J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  7. Yates, J.R. et al. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med. 357, 553–561 (2007).
    Article CAS PubMed Google Scholar
  8. Gold, B. et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38, 458–462 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  9. Fagerness, J.A. et al. Variation near complement factor I is associated with risk of advanced AMD. Eur. J. Hum. Genet. 17, 100–104 (2009).
    Article CAS PubMed Google Scholar
  10. Hageman, G.S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 102, 7227–7232 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  11. Maller, J.B. et al. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat. Genet. 39, 1200–1201 (2007).
    Article CAS PubMed Google Scholar
  12. Rivera, A. et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum. Mol. Genet. 14, 3227–3236 (2005).
    Article CAS PubMed Google Scholar
  13. Jakobsdottir, J. et al. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet. 77, 389–407 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  14. Klaver, C.C. et al. Genetic association of apolipoprotein E with age-related macular degeneration. Am. J. Hum. Genet. 63, 200–206 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Souied, E.H. et al. The ɛ4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am. J. Ophthalmol. 125, 353–359 (1998).
    Article CAS PubMed Google Scholar
  16. McKay, G.J. et al. Evidence of association of APOE with age-related macular degeneration: a pooled analysis of 15 studies. Hum. Mutat. 32, 1407–1416 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  17. Chen, W. et al. Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 107, 7401–7406 (2010).
    Article PubMed PubMed Central Google Scholar
  18. Neale, B.M. et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. USA 107, 7395–7400 (2010).
    Article PubMed PubMed Central Google Scholar
  19. Yu, Y. et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum. Mol. Genet. 20, 3699–3709 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  20. Arakawa, S. et al. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat. Genet. 43, 1001–1004 (2011).
    Article CAS PubMed Google Scholar
  21. McCarthy, M.I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).
    Article CAS PubMed Google Scholar
  22. Li, Y., Willer, C.J., Sanna, S. & Abecasis, G.R. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  23. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).
    CAS PubMed Google Scholar
  24. Browning, B.L. & Browning, S.R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  25. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).
    Article PubMed PubMed Central Google Scholar
  26. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  27. Skol, A.D., Scott, L.J., Abecasis, G.R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38, 209–213 (2006).
    Article CAS PubMed Google Scholar
  28. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).
    Article Google Scholar
  29. Sobrin, L. et al. ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am. J. Ophthalmol. 151, 345–352 (2011).
    Article CAS PubMed Google Scholar
  30. Seddon, J.M. et al. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. J. Am. Med. Assoc. 297, 1793–1800 (2007).
    Article CAS Google Scholar
  31. Li, M. et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat. Genet. 38, 1049–1054 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  32. Maller, J. et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat. Genet. 38, 1055–1059 (2006).
    Article CAS PubMed Google Scholar
  33. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  34. Raychaudhuri, S. et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat. Genet. 43, 1232–1236 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  35. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  36. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  37. Sivakumaran, T.A. et al. A 32 kb critical region excluding Y402H in CFH mediates risk for age-related macular degeneration. PLoS ONE 6, e25598 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  38. Wellcome Trust Case Control Consortium.. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).
  39. 1000 Genomes Project Consortium. A map of human genome variation from population scale sequencing. Nature 467, 1061–1073 (2010).
  40. Fritsche, L.G. et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat. Genet. 40, 892–896 (2008).
    Article CAS PubMed Google Scholar
  41. Dewan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).
    Article CAS PubMed Google Scholar
  42. Hughes, A.E. et al. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat. Genet. 38, 1173–1177 (2006).
    Article CAS PubMed Google Scholar
  43. Fritsche, L.G. et al. An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum. Mol. Genet. 19, 4694–4704 (2010).
    Article CAS PubMed Google Scholar
  44. Brooks, M.J., Rajasimha, H.K., Roger, J.E. & Swaroop, A. Next-generation sequencing facilitates quantitative analysis of wild-type and _Nrl_−/− retinal transcriptomes. Mol. Vis. 17, 3034–3054 (2011).
    CAS PubMed PubMed Central Google Scholar
  45. Strunnikova, N.V. et al. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum. Mol. Genet. 19, 2468–2486 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  46. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).
    Article PubMed PubMed Central Google Scholar
  47. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
    CAS PubMed PubMed Central Google Scholar
  48. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  49. So, H.C., Gui, A.H., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol. 35, 310–317 (2011).
    Article PubMed Google Scholar
  50. Seddon, J.M., Reynolds, R., Yu, Y., Daly, M.J. & Rosner, B. Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 118, 2203–2211 (2011).
    Article PubMed Google Scholar
  51. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
    Article CAS PubMed Google Scholar
  52. Wallace, C. et al. The imprinted _DLK1_-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).
    Article CAS PubMed Google Scholar
  53. Huang, L. et al. Genotype-imputation accuracy across worldwide human populations. Am. J. Hum. Genet. 84, 235–250 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  54. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  55. Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  56. Zeger, S.L. & Liang, K.Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–130 (1986).
    Article CAS PubMed Google Scholar
  57. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012).
  58. International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
  59. Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  60. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
  61. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  62. Lee, P.H., O'Dushlaine, C., Thomas, B. & Purcell, S.M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).
    Article CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

We are indebted to all the participants who volunteered their time, DNA and information to make this research study possible. We are also in great debt to the clinicians, nurses and research staff who participated in patient recruitment and phenotyping. We thank H. Chin for constant support and encouragement, which helped us bring this project to completion. We thank S. Miller and J. Barb for access to RPE expression data and the MIGEN study group for use of their genotype data. We thank C. Pappas, N. Miller, J. Hageman, W. Hubbard, L. Lucci, A. Vitale, P. Bernstein and N. Amin for technical and clinical assistance. We thank E. Rochtchina, A.C. Viswanathan, J. Xie, M. Inouye, E.G. Holliday, J. Attia and R.J. Scott for contributions to the Blue Mountains Eye Study GWAS. We thank members of the Genetic Factors in AMD Study Group, the Scottish Macula Society Study Group and the Wellcome Trust Clinical Research facility at Southampton General Hospital. We thank T. Peto and colleagues at the Reading Centre, Moorfields Eye Hospital and C. Brussee and A. Hooghart for help in patient recruitment and phenotyping. Full details of funding sources can be found in the Supplementary Note.

Author information

Author notes

  1. Lars G Fritsche, Wei Chen, Matthew Schu, Brian L Yaspan and Yi Yu: These authors contributed equally to this work.
  2. Rando Allikmets, Paul N Baird, Michael B Gorin, Jie Jin Wang, Caroline C W Klaver, Johanna M Seddon, Margaret A Pericak-Vance, Sudha K Iyengar, John R W Yates, Anand Swaroop, Bernhard H F Weber, Michiaki Kubo, Margaret M DeAngelis, Thierry Léveillard, Unnur Thorsteinsdottir, Jonathan L Haines, Lindsay A Farrer, Iris M Heid and Gonçalo R Abecasis: These authors jointly directed this work.

Authors and Affiliations

  1. Institute of Human Genetics, University of Regensburg, Regensburg, Germany
    Lars G Fritsche & Bernhard H F Weber
  2. Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
    Lars G Fritsche, Wei Chen, Xueling Sim & Gonçalo R Abecasis
  3. Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Allergy and Immunology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
    Wei Chen
  4. Department of Medicine, Section of Biomedical Genetics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
    Matthew Schu, Gyungah Jun & Lindsay A Farrer
  5. Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
    Brian L Yaspan & Jonathan L Haines
  6. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
    Brian L Yaspan & Jonathan L Haines
  7. Ophthalmic Epidemiology and Genetics Service, Tufts Medical Center, Boston, Massachusetts, USA
    Yi Yu, Kimberly A Chin, Robyn Reynolds & Johanna M Seddon
  8. deCODE Genetics, Reykjavik, Iceland
    Gudmar Thorleifsson, Hreinn Stefansson, Kari Stefansson & Unnur Thorsteinsdottir
  9. Department of Molecular Biology and Genetics, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Donald J Zack
  10. Department of Genetics, Institut de la Vision, Université Pierre et Marie Curie–Université Paris 6, Unité Mixte de Recherche Scientifique (UMRS) 968, Paris, France
    Donald J Zack, Isabelle Audo, José-Alain Sahel & Thierry Léveillard
  11. Department of Neuroscience, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Donald J Zack & Peter A Campochiaro
  12. Institute of Genetic Medicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Donald J Zack
  13. Laboratory for Genotyping Development, Research Group for Genotyping, Center for Genomic Medicine (CGM), RIKEN, Yokohama, Japan
    Satoshi Arakawa & Michiaki Kubo
  14. Moorfields Eye Hospital, London, UK
    Valentina Cipriani, Alan C Bird, Anthony T Moore, Andrew R Webster & John R W Yates
  15. Institute of Ophthalmology, University College London, London, UK
    Valentina Cipriani, Isabelle Audo, Alan C Bird, Anthony T Moore, José-Alain Sahel, Andrew R Webster & John R W Yates
  16. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
    Stephan Ripke & Mark J Daly
  17. Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
    Stephan Ripke
  18. Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
    Robert P Igo Jr, Peronne Joseph, Barbara J Truitt & Sudha K Iyengar
  19. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
    Gabriëlle H S Buitendijk, André G Uitterlinden, Cornelia M van Duijn, Johannes R Vingerling & Caroline C W Klaver
  20. Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
    Gabriëlle H S Buitendijk, Johannes R Vingerling & Caroline C W Klaver
  21. Centre for Molecular Epidemiology, National University of Singapore, Singapore
    Xueling Sim
  22. Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
    Daniel E Weeks
  23. Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
    Daniel E Weeks
  24. Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
    Robyn H Guymer, Melinda S Cain, Andrea J Richardson, Tien Y Wong, Paul N Baird & Jie Jin Wang
  25. Department of Ophthalmology, Columbia University, New York, New York, USA
    Joanna E Merriam, Gaetano R Barile, R Theodore Smith & Rando Allikmets
  26. Macular Degeneration Center, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
    Peter J Francis & Michael L Klein
  27. Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
    Gregory Hannum
  28. Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
    Anita Agarwal
  29. Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
    Anita Agarwal
  30. Department of Ophthalmology, University of Edinburgh and Princess Alexandra Eye Pavilion, Edinburgh, UK
    Ana Maria Armbrecht, Baljean Dhillon & Saddek Mohand-Saïd
  31. Institut National de la Santé et de la Recherche Médicale (INSERM) U968, Paris, France
    Isabelle Audo, José-Alain Sahel & Thierry Léveillard
  32. Centre National de la Recherche Scientifique (CNRS), UMR 7210, Paris, France
    Isabelle Audo, Saddek Mohand-Saïd, José-Alain Sahel & Thierry Léveillard
  33. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
    Tin Aung, Ching-Yu Cheng, Belinda K Cornes, Eranga N Vithana & Tien Y Wong
  34. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
    Tin Aung, Ching-Yu Cheng, Eranga N Vithana & Tien Y Wong
  35. Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM–Direction de l'Hospitalisation et de l'Organisation des Soins, Centres d'Investigation Clinique 503, Paris, France
    Mustapha Benchaboune, Saddek Mohand-Saïd & José-Alain Sahel
  36. Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
    Paul N Bishop
  37. Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
    Paul N Bishop
  38. Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
    Kari E Branham, John R Heckenlively, Mohammad I Othman & Anand Swaroop
  39. Neurobiology Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA
    Matthew Brooks, Radu Cojocaru, James S Friedman, Neel Gupta, Rinki Ratna Priya & Anand Swaroop
  40. Scheie Eye Institute, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania, USA
    Alexander J Brucker
  41. John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
    William H Cade, Adam C Naj, William K Scott & Margaret A Pericak-Vance
  42. Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
    William H Cade, Adam C Naj, William K Scott & Margaret A Pericak-Vance
  43. Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
    Peter A Campochiaro & Hendrik P N Scholl
  44. Immunopathology Section, Laboratory of Immunology, National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA
    Chi-Chao Chan
  45. Saw Swee Hock School of Public Health, National University of Singapore, Singapore
    Ching-Yu Cheng
  46. Centre for Quantitative Medicine, Office of Clinical Sciences, Duke–National University of Singapore Graduate Medical School, Singapore
    Ching-Yu Cheng
  47. Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, US National Institutes of Health, Bethesda, Maryland, USA
    Emily Y Chew
  48. Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
    Itay Chowers
  49. Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
    David G Clayton, Jane C Khan, Humma Shahid & John R W Yates
  50. Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
    Yvette P Conley
  51. Institute for Molecular Biology, University of Oregon, Eugene, Oregon, USA
    Albert O Edwards
  52. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
    Evangelos Evangelou
  53. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
    Jesen Fagerness
  54. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
    Jesen Fagerness
  55. Department of Ophthalmology, University of California, San Diego, La Jolla, California, USA
    Henry A Ferreyra, Guy Hughes, Igor Kozak, Clara J Lee, Ming Zhang, Ling Zhao & Kang Zhang
  56. Shiley Eye Center, University of California, San Diego, La Jolla, California, USA
    Henry A Ferreyra, Guy Hughes, Igor Kozak, Clara J Lee, Ming Zhang, Ling Zhao & Kang Zhang
  57. Department of Ophthalmology, National University Hospital, Reykjavik, Iceland
    Asbjorg Geirsdottir & Haraldur Sigurdsson
  58. Glaucoma Project, Vision Research Foundation, Sankara Nethralaya, Chennai, India
    Ronnie J George & Lingam Vijaya
  59. Institute of Genetic Epidemiology, Helmholtz Zentrum München–Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
    Christian Gieger & Iris M Heid
  60. Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
    Stephanie A Hagstrom, Gayle J T Pauer & Neal S Peachey
  61. Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
    Simon P Harding
  62. Augenklinik, Ludwig-Maximilians-Universität München, Munich, Germany
    Christos Haritoglou & Guenther Rudolph
  63. Department of Ophthalmology, University of Bonn, Bonn, Germany
    Frank G Holz & Hendrik P N Scholl
  64. Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
    Guy Hughes, Clara J Lee, Ming Zhang, Ling Zhao & Kang Zhang
  65. Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, California, USA
    John P A Ioannidis
  66. Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, USA
    John P A Ioannidis
  67. Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, USA
    John P A Ioannidis
  68. Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
    Tatsuro Ishibashi
  69. Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
    Gyungah Jun & Lindsay A Farrer
  70. Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
    Gyungah Jun & Lindsay A Farrer
  71. Fondation Jean Dausset, Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France
    Yoichiro Kamatani & G Mark Lathrop
  72. Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
    Nicholas Katsanis
  73. Department of Cell Biology, Duke University, Durham, North Carolina, USA
    Nicholas Katsanis
  74. Department of Pediatrics, Duke University, Durham, North Carolina, USA
    Nicholas Katsanis
  75. Department of Ophthalmology, Julius-Maximilians-Universität, Würzburg, Germany
    Claudia N Keilhauer
  76. Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
    Jane C Khan
  77. Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
    Jane C Khan
  78. Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
    Ivana K Kim, Debra A Schaumberg & Lucia Sobrin
  79. Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
    Ivana K Kim & Lucia Sobrin
  80. Department of Environmental Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
    Yutaka Kiyohara
  81. Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
    Barbara E K Klein, Ronald Klein, Kristine E Lee & Chelsea E Myers
  82. Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
    Jaclyn L Kovach & Stephen G Schwartz
  83. Institute of Human Genetics, Helmholtz Zentrum München–Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
    Peter Lichtner & Thomas Meitinger
  84. Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
    Andrew J Lotery
  85. Institute of Human Genetics, Technische Universität München, Munich, Germany
    Thomas Meitinger
  86. Department of Ophthalmology and the Westmead Millennium Institute, Centre for Vision Research, University of Sydney, Sydney, New South Wales, Australia
    Paul Mitchell & Jie Jin Wang
  87. Department of Therapeutics, Institut de la Vision, Université Pierre et Marie Curie–Université Paris 6, UMRS 968, Paris, France
    Saddek Mohand-Saïd
  88. Department of Ophthalmology and Visual Sciences, University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, USA
    Denise J Morgan, Margaux A Morrison & Margaret M DeAngelis
  89. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
    Yusuke Nakamura
  90. Laboratory for Statistical Analysis, CGM, RIKEN, Yokohama, Japan
    Yukinori Okada & Atsushi Takahashi
  91. Department of Ophthalmology, Weill Cornell Medical College, New York, New York, USA
    Anton Orlin
  92. Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
    M Carolina Ortube & Michael B Gorin
  93. Jules Stein Eye Institute, Los Angeles, California, USA
    M Carolina Ortube & Michael B Gorin
  94. Moran Center for Translational Medicine, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
    Chris Pappas & Gregory S Hageman
  95. Research Service, Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio, USA
    Kyu Hyung Park
  96. Laboratory of Integrative Bioinformatics and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
    Neal S Peachey & Gwen M Sturgill-Short
  97. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
    Olivier Poch & Raymond Ripp
  98. Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
    Euijung Ryu & Nirubol Tosakulwong
  99. Académie des Sciences–Institut de France, Paris, France
    José-Alain Sahel
  100. Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
    José-Alain Sahel
  101. Department of Ophthalmology, Addenbrooke's Hospital, Cambridge, UK
    Debra A Schaumberg
  102. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
    Humma Shahid
  103. Centre for Vision and Vascular Science, Queen's University, Belfast, UK
    Haraldur Sigurdsson, Kari Stefansson & Unnur Thorsteinsdottir
  104. Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
    Giuliana Silvestri
  105. Department of Biomedical Engineering, Columbia University, New York, New York, USA
    Theru A Sivakumaran
  106. Centre de Recherche Clinique d'Ophthalmologie, Hôpital Intercommunal de Créteil, Hôpital Henri Mondor, Université Paris Est, Créteil, France
    R Theodore Smith
  107. Department of Ophthalmology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
    Eric H Souied
  108. Department of Ophthalmology, University of Thessaly School of Medicine, Larissa, Greece
    Dwight E Stambolian
  109. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
    Evangelia E Tsironi
  110. Institute of Epidemiology I, Helmholtz Zentrum München–Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
    André G Uitterlinden
  111. Institute of Medical Informatics, Ludwig-Maximilians-Universität and Klinikum Großhadern, Munich, Germany
    H-Erich Wichmann
  112. Institute of Biometry, Ludwig-Maximilians-Universität and Klinikum Großhadern, Munich, Germany
    H-Erich Wichmann
  113. Institute of Epidemiology, Ludwig-Maximilians-Universität and Klinikum Großhadern, Munich, Germany
    H-Erich Wichmann
  114. Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
    H-Erich Wichmann
  115. Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
    Thomas W Winkler & Iris M Heid
  116. Centre National de Génotypage, Centre d'Energie Atomique–Institut de Génomique (IG), Evry, France
    Alan F Wright
  117. Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
    Diana Zelenika & G Mark Lathrop
  118. Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
    Ming Zhang & Kang Zhang
  119. Center for Translational Medicine, University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, USA
    Ming Zhang & Kang Zhang
  120. Department of Pathology & Cell Biology, Columbia University, New York, New York, USA
    Rando Allikmets
  121. Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,
    Michael B Gorin
  122. Department of Ophthamology, Tufts University School of Medicine, Boston, Massachusetts, USA
    Johanna M Seddon
  123. Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
    Sudha K Iyengar
  124. Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
    Sudha K Iyengar
  125. Center for Clinical Investigation, Case Western Reserve University, Cleveland, Ohio, USA
    Sudha K Iyengar
  126. Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
    Lindsay A Farrer
  127. Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
    Lindsay A Farrer

Consortia

The AMD Gene Consortium

Contributions

AMD Gene Analysis Committee: L.G.F., W.C., M.S., B.L.Y., Y.Y., L.A.F., I.M.H. (co-lead) and G.R.A. (co-lead). AMD Gene Phenotype Committee: R.K., C.C.W.K., T.L., J.M.S. (lead) and J.J.W. (co-lead). AMD Gene Steering Committee: B.H.F.W. (chair, senior executive committee), G.R.A. (senior executive committee), M.M.D. (senior executive committee), J.L.H. (senior executive committee), S.K.I. (senior executive committee), M.A.P.-V. (senior executive committee), R.A., P.N. Baird, C.C.W.K., B.E.K.K., M.L.K., M.K., T.L., J.M.S., U.T., D.E.W., J.R.W.Y. and K.Z. AMD-EU-JHU: D.J.Z., I.A., M. Benchaboune, A.C.B., P.A.C., I.C., F.G.H., Y. Kamatani, N.K., A.J.L., S.M.-S., O.P., R. Ripp, J.-A.S., H.P.N.S., E.H.S., A.R.W., D.Z., G.M.L. and T.L. contributed phenotypes, genotypes and analyses for the AMD-EU-JHU study. BDES: R.P.I., B.E.K.K., R.K., K.E.L., C.E.M., T.A.S., B.J.T. and S.K.I. contributed phenotypes, genotypes and analyses for the BDES study. Blue Mountains Eye Study: X.S., P.M., T.Y.W. and J.J.W. contributed phenotypes, genotypes and analyses for BMES. BU/Utah: M.S., G.S.H., G.J., I.K.K., D.J.M., M.A.M., C.P., K.H.P., D.A.S., G.S., E.E.T., M.M.D. and L.A.F. contributed phenotypes, genotypes and analyses for the BU/Utah study. CCF/VAMC: S.A.H., P.J., G.J.T.P., N.S.P., G.M.S.-S., R.P.I. and S.K.I. contributed phenotypes, genotypes and analyses for the CCF/VAMC study. CEI: P.J.F. and M.L.K. contributed phenotypes, genotypes and analyses for the CEI study. Columbia: J.E.M., G.R.B., R.T.S. and R.A. contributed phenotypes, genotypes and analyses for the Columbia study. deCODE: A.G., G.T., H. Sigurdsson, H. Stefansson, K.S. and U.T. contributed phenotypes, genotypes and analyses for the deCODE study. Japan Age-Related Eye Diseases Study: S.A., T.I., Y. Kiyohara, Y.N., Y.O., A.T. and M.K. contributed phenotypes, genotypes and analyses for JAREDS. Melbourne: R.H.G., M.S.C., A.J.R. and P.N. Baird contributed phenotypes, genotypes and analyses for the Melbourne study. Miami/Vanderbilt: B.L.Y., A.A., W.H.C., J.L.K., A.C.N., S.G.S., W.K.S., M.A.P.-V. and J.L.H. contributed phenotypes, genotypes and analyses for the Miami/Vanderbilt study. MMAP/NEI: W.C., K.E.B., M. Brooks, A.J.B., C.-C.C., E.Y.C., R.C., A.O.E., J.S.F., N.G., J.R.H., A.O., M.I.O., R.R.P., E.R., D.E.S., N.T., A.S. and G.R.A. contributed phenotypes, genotypes and analyses for the MMAP/NEI study. Rotterdam: G.H.S.B., A.G.U., C.M.v.D., J.R.V. and C.C.W.K. contributed phenotypes, genotypes and analyses for the Rotterdam study. SAGE: T.A., C.-Y.C., B.K.C. and E.N.V. contributed phenotypes, genotypes and analyses for the SAGE study. Southern German AMD Study: L.G.F., C.G., C.H., C.N.K., P.L., T.M., G.R., H.-E.W., T.W.W., B.H.F.W. and I.M.H. contributed phenotypes, genotypes and analyses for the Southern German AMD Study. Tufts/Massachusetts General Hospital: Y.Y., S.R., K.A.C., M.J.D., E.E., J.F., J.P.A.I., R. Reynolds, L.S. and J.M.S. contributed phenotypes, genotypes and analyses for the Tufts/MGH study. UK Cambridge/Edinburgh: V.C., A.M.A., P.N. Bishop, D.G.C., B.D., S.P.H., J.C.K., A.T.M., H. Shahid, A.F.W. and J.R.W.Y. contributed phenotypes, genotypes and analyses for the UK Cambridge/Edinburgh study. University of Pittsburgh/UCLA: D.E.W., Y.P.C., M.C.O. and M.B.G. contributed phenotypes, genotypes and analyses for the University of Pittsburgh/UCLA study. UCSD: G. Hannum, H.A.F., G. Hughes, I.K., C.J.L., M.Z., L.Z. and K.Z. contributed phenotypes, genotypes and analyses for the USCD study. VRF: R.J.G., L.V., R.P.I. and S.K.I. contributed phenotypes, genotypes and analyses for the VRF study. Gene expression and RNA sequencing data: data were contributed and analyzed by M. Brooks, J.S.F., N.G., R.R.P. and A.S.

Corresponding authors

Correspondence toJonathan L Haines, Lindsay A Farrer, Iris M Heid or Gonçalo R Abecasis.

Ethics declarations

Competing interests

A.A., G.R.A., K.E.B., V.C., Y.P.C., M.J.D., A.O.E., L.G.F., M.B.G., J.L.H., A.T.M., D.A.S., W.K.S., J.M.S., A.S., B.H.F.W., D.E.W. and J.R.W.Y. are coinventors or beneficiaries of patents related to genetic discoveries in AMD. J.L.H. and M.M.D. are shareholders in ArcticDX. S.G.S. is a consultant for Alimera, Bausch + Lomb, Eyetech and ThromboGenics and receives royalties from IC Labs. U.T., K.S., G.T. and H. Stefansson are affiliated and/or employed by deCODE Genetics and own stock and/or stock options in the company. H.P.N.S. is on advisory boards for Sanofi-Fovea and AMD Therapy Fund and on the safety monitoring board of StemCells Inc. P.M. is on advisory boards for Allergan, Bayer, Novartis, Pfizer and Solvay and has received travel, honorarium and research support from these companies; he has no stock, equity, contract of employment or named position on company boards.

Supplementary information

Rights and permissions

About this article

Cite this article

The AMD Gene Consortium. Seven new loci associated with age-related macular degeneration.Nat Genet 45, 433–439 (2013). https://doi.org/10.1038/ng.2578

Download citation